MECH410/520 Computer Aided Design (CAD)

Spring 2010

Course Description (see UVic Calendar)

The course consists of the following components:

- 1) Computer Graphics Theory (Geometric Representation, Projection, Transformations, Solid and Surface Models of CAD Systems)
- 2) Advanced CAD/CAE/CAM Systems, Pro/ENGINEER[®], and Its Applications
- 3) Virtual Prototyping of Mechanical Components and Devices
- 4) Design Optimization Using Computer Virtual Prototypes
- 5) Interactive Graphical Programming

Course Information

Instructors:	Armando Tura Office: ELW B126; Phone: 721-7295; E-mail: atura@uvic.ca Dr. Zuomin Dong Office: EOW 548/551; Phone: 721-8900; E-mail: zdong@uvic.ca Course Homepage: <u>http://www.me.uvic.ca/~mech410/</u>	
Section Number: Lecture Schedule:	Lecture: S01, Lab.: LS01 (open lab). Credits: 1 1/2 Tuesday, Wedsdays and Fridays 11:30 am -12:30 pm	
Lecture Place:	CORB 143	
Office Hours:	Tuesday: 1:30-3:30 p.m. ELW A254 (or by appointment)	
Lab. Schedule:	Computational Design Lab. ELW B228 (Open 7x24, first lab: Jan 13)	
Lab. Consultant:	Tuesdays 1:30 - 4:30 p.m. (Mr. Minh Ly, Lab: ELW B228 and Office: ELW A214)	
References:	 Lee, K. Principles of CAD/CAM/CAE Systems, Addison Wesley, 1999. MECH410/520 Web Page at <u>http://www.me.uvic.ca/~mech410/</u> 	

• Roger Toogood, Pro/ENGINEER Wildfire 4.0 Tutorial, SDC.

Pro/ENGINEER Laboratory		MECH410 (Group of 2)	MECH520 (Individual)
Laboratory 1 (Start on Jan 15)	Design Modeling - User Interface; 2D Sketching; 3D Modeling; and Engineering Drawing Generation (10 days)	7 %	7 %
Laboratory 2	Mechanical Assembly – Modeling of Assembly and Mechanism; and Motion Animation (10 days)	7 %	7 %
Laboratory 3	Static Structural (and Thermal) Analysis (1 wk)	5 %	5 %
Laboratory 4	Sensitivity Analysis and Design Optimization (1 wk)	5 %	5 %
Laboratory 5	Automated CNC Tool Path Generation & Machining (1wk)	6 %	6 %
Final Project [*] Project Presentation (March 30, Tue) and Report (3-4 wks)		35 %	40 %
-			
Using Pro/ENGINEER; or Unigraphics NX; or SolidWorks			
Assignments	To be assigned in class	0 %	0 %
Quiz 1	(1 lecture time, Sections 1,2,3,4,5,7,8) Feb 24	17.5 %	15 %
Quiz 2	(1 lecture time, Sections 8-13) Mar 31	17.5 %	15 %

^{* &}quot;Satisfactory" work can earn 80 percent of the grade. The rest 20 percent of the grade will be rewarded to creative work.

- 1. Introduction to CAD/CAE/CAM and Technology Review
- 2. Computer Hardware and Software for A CAD System
- Graphical Coordinate Systems Model (or World, Database) Coordinate System (MCS); Working Coordinate System (WCS); Screen Coordinate System (SCS); Viewing Coordinate System (VCS)
- 4. Reviews on Geometric Transformations and Projections
 - a) 2D and 3D Transformations
 - b) Parallel Projections
- 5. An Introduction to the Pro/ENGINEER Design Modeling System
 - a) Foundation of the Pro/ENGINEER and Feature-based Solid Modeling CAD Systems
 - b) Function Modules of a CAD/CAE/CAM System
 - c) Pro/E User Interface and Part/Assembly Model Generation
 - d) Engineering Drawings and Documentation, File Conversion
 - e) Motion Simulation
- 6. An An Overview of Unigraphics NX CAD/CAM/CAE System
- 7. Computer Modeling Techniques
 - a) Wireframe Model
 - b) Solid Model: Boundary Representation; Sweeping; Construction Solid Geometry
 - c) Feature-based Modeling and Parametric Modeling
 - d) Computer Model for Scanned Data and Reverse Engineering
- 8. An Introduction to Design Optimization
 - a) Formulation of a Design Optimization Problem
 - b) Search Schemes of Commonly Used Optimization Methods
 - c) Important Issues in Design Optimization
 - d) Virtual Prototyping Based Design Optimization
- 9. <u>Advanced Applications of Pro/ENGINEER (Integrated CAD/CAE/CAM): Structural/Thermal Analysis,</u> <u>Parameter Design Optimization, Automated CNC Tool Path Generation and Animation, and Freeform Surface</u> <u>Design</u>
- 10. Representation of Curves
 - a) Parametric Curve Representation
 - b) Cubic spline, Bezier curves, B-spline curves and NURB
- 11. Representation of Surfaces
 - a) Plane; Bilinear, Ruled, Bezier and NURB Surfaces
 - b) Visualizing Surfaces; Surface Mesh and Surface Machining
 - c) Surface Modeling in Pro/ENGINEER
- 12. Interactive Computer Graphical Programming
 - a) Introduction and Background Review
 - b) Programming in CAD Systems (Menu, Macro and High-level Programming AutoCAD & Pro/E)
- 13. Data Organization in CAD
 - a) Data Structure and Database
 - b) Graphical Standard and CAD/CAM Data Exchange
- 14. Advanced CAD Systems and Their Industrial Applications
 - a) CAD/CAM Integration and Concurrent Engineering
 - b) Virtual-prototyping in Product Development

(An Overview of SolidWorks and COSMOS Works)