Projection Views

Content

- Coordinate systems
- Orthographic projection
- (Engineering Drawings)

Graphical Coordinator Systems

A coordinate system is needed to input, store and display model geometry and graphics.

Four different types of coordinate systems are used in a CAD system at different stages of geometric modeling and for different tasks.

Model (or World, Database) Coordinator System

- The reference space of the model with respect to which all of the geometrical data is stored.
- It is a Cartesian system which forms the default coordinate system used by a software system.

Viewing Coordinate System

Textbook setup - for Parallel Projection, the viewer is at infinity.

- Viewer

Viewing Coordinate System (VCS)

A 3-D Cartesian coordinate system (right hand of left hand) in which a projection of the modeled object is formed. VSC will be discussed in detail under Perspective or Parallel Projections.

$$
P=(x y z)^{\prime}
$$

$P=(x y z)_{n c s}^{\top}=(u \vee n)_{v c s}^{\top}$

Viewer, $C P$ (center of Projection) (Model) was

$$
P=(x y z)_{n c s}^{\top}=(u \vee n)_{v c s}^{\top}
$$

$P=(x y z)_{m c s}^{\top}=(u \vee n)_{v c s}^{\top}$

$P=(x y z)_{n c s}^{\top}=(u \vee n)_{v c s}^{\top}$

$P=(x y z)_{m c s}^{\top}=(u \vee n)_{v c s}^{\top}$

$P=(x y z)_{n c s}^{\top}=(u \vee n)_{v c s}^{\top}$

(Model)

a 3D object.
(a) Perspective Projection

(2) Parallel Projection

Parallel Projection

- Preserve actual dimensions and shapes of objects
- Preserve parallelism
- Angles preserved only on faces parallel to the projection plane
- Orthographic projection is one type of parallel projection

Perspective Projection

- Doesn't preserve parallelism
- Doesn't preserve actual dimensions and angles of objects, therefore shapes deformed
- Popular in art (classic painting); architectural design and civil engineering.
- Not commonly used in mechanical engineering
$P=(x y z)_{n c s}^{\top}=(u \vee n)_{v c s}^{\top}$

Geometric Transformations for Generating Projection View

Set Up the Viewing Coordinate System (VCS)
i) Define the view reference point $\quad \mathbf{P}=\left(\mathrm{P}_{\mathrm{x}}, \mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}\right)^{T}$
ii) Define the line of the sight vector $\overrightarrow{\mathrm{n}} \quad$ (normalized)

$$
\overrightarrow{\mathrm{n}}=\left(\mathrm{N}_{\mathrm{x}}, \mathrm{~N}_{\mathrm{y}}, \mathrm{~N}_{\mathrm{z}}\right)^{\mathrm{T}} \quad \text { and } \quad \mathrm{N}_{\mathrm{x}}^{2}+\mathrm{N}_{\mathrm{y}}^{2}+\mathrm{N}_{\mathrm{z}}^{2}=1
$$

iii) Define the "up" direction

$$
\overrightarrow{\mathrm{V}}=\left(\mathrm{V}_{\mathrm{x}}, \quad \mathrm{~V}_{\mathrm{y}}, \quad \mathrm{~V}_{\mathrm{z}}\right)^{\mathrm{T}} \perp \stackrel{\rightharpoonup}{\mathrm{n}}, \quad \overrightarrow{\mathrm{~V}} \cdot \stackrel{\rightharpoonup}{\mathrm{n}}=0
$$

This also defines an orthogonal vector, $\overrightarrow{\mathrm{u}}=\overrightarrow{\mathrm{V}} \times \overrightarrow{\mathrm{n}}$ ($\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{V}}, \overrightarrow{\mathrm{n}}$) forms the viewing coordinates

Define the View Window in $\bar{u}-\bar{v}-\bar{n}$ coordinates

Generating Parallel Projection

Problem: for a given computer model, we know its $x-y-z$ coordinates in MCS; and we need to find its $u-v-n$ coordinates in VCS and $\mathrm{X}_{\mathrm{s}}-\mathrm{Y}_{\mathrm{s}}$ in WCS.

Getting the u-v-n coordinates of the objects by transforming the objects and $u-v-n$ coordinate system together to fully align $u-v-n$ with $x-y-z$ axes, then drop the n (the depth) component to get X_{s} and Y_{s}

Generating Parallel Projection (1)

First transform coordinates of objects into the $u-v-n$ coordinates (VCS), then drop the n component. (n is the depth)
i.e. Overlapping $\boldsymbol{u} \boldsymbol{- v}-\boldsymbol{n}$ with $\boldsymbol{x}-\boldsymbol{y}-\boldsymbol{z}$
i) Translate $\boldsymbol{O}_{\boldsymbol{v}}$ to \boldsymbol{O}.
ii) Align the \vec{n} axis with the Z axis.

$$
[\mathrm{D}]=\left[\begin{array}{cccc}
1 & 0 & 0 & -0_{\mathrm{vx}} \\
0 & 1 & 0 & -0_{\mathrm{vy}} \\
0 & 0 & 1 & -0_{\mathrm{vz}} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The procedure is identical to the transformations used to prepare for the rotation about an axis.

$$
\begin{aligned}
& A=N_{x}, \quad B=N_{y}, \quad C=N_{z} \\
& L=\sqrt{N_{x}^{2}+N_{y}^{2}+N_{z}^{2}} \\
& V=\sqrt{N_{y}^{2}+N_{z}^{2}}
\end{aligned}
$$

Generating Parallel Projection (2)

Rotating θ_{1} about X : $[\mathrm{R}]_{x}$; and Rotating θ_{2} about Y : $[\mathrm{R}]_{y}$
Fully aligning u-v-n with $x-y-z$

Then, rotate θ_{3} about the Z axis to align \bar{u} with X and \bar{v} with Y

Generating Parallel Projection (3)

Rotate θ_{3} about the Z axis to align \bar{u} with X and \bar{v} with Y
At this point, $\overline{\mathrm{V}}$ is given by $\left(\mathrm{V}_{\mathrm{x}}^{\prime}, \mathrm{V}_{\mathrm{y}}^{\prime}, 0\right)^{\mathrm{T}}$ where

$$
\left(\begin{array}{c}
V_{x}^{\prime} \\
V_{y}^{\prime} \\
0 \\
1
\end{array}\right)=\left[R_{y}\right]\left[R_{x}\right]\left[\operatorname{Do}_{v}, o\right]\left(\begin{array}{c}
V_{x} \\
V_{y} \\
V_{z} \\
1
\end{array}\right)
$$

We need to rotate by an angle $\boldsymbol{\theta}_{3}$ about the \boldsymbol{Z} axis

$$
\begin{aligned}
\mathrm{L} & =\sqrt{\mathrm{V}_{\mathrm{x}}^{\prime 2}+\mathrm{V}_{\mathrm{y}}^{\prime 2}}, \quad \sin \theta_{3}=\frac{\mathrm{V}_{\mathrm{x}}^{\prime}}{\mathrm{L}}, \quad \cos \theta_{3}=\frac{\mathrm{V}_{\mathrm{y}}^{\prime}}{\mathrm{L}} \\
{\left[\mathrm{R}_{\mathrm{z}}\right] } & =\left[\begin{array}{cccc}
\mathrm{V}_{\mathrm{r} / \mathrm{L}}^{\prime} & -\mathrm{V}_{\mathrm{x} / \mathrm{L}}^{\prime} & 0 & 0 \\
\mathrm{~V}_{\mathrm{x} / \mathrm{L}}^{\prime} & \mathrm{V}_{\mathrm{y} / \mathrm{L}}^{\prime} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Generating Parallel Projection (4)

Drop the n coordinate

$$
\left[\mathrm{D}_{\mathrm{n}}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad\left(\begin{array}{c}
\mathrm{u} \\
\mathrm{~V} \\
\mathbf{0} \\
1
\end{array}\right)=\left[\mathrm{D}_{\mathrm{n}}\right]\left(\begin{array}{c}
\mathrm{u} \\
\mathrm{~V} \\
\mathrm{n} \\
1
\end{array}\right)
$$

In summary, to project a view of an object on the UV plane, one needs to transform each point on the object by:

$$
[T]=\left[D_{n}\right]\left[R_{z}\right]\left[R_{y}\right]\left[R_{x}\right]\left[D_{o_{v}, o}\right]
$$

$$
\mathbf{P}^{\prime}=\left(\begin{array}{l}
\mathrm{u} \\
\mathrm{~V} \\
0 \\
1
\end{array}\right)=[\mathrm{T}] \mathbf{P}=[\mathrm{T}]\left(\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z} \\
1
\end{array}\right)
$$

Note: The inverse transforms are not needed! We don't want to go back to $x-y-z$ coordinates.

Orthographic Projection

- Projection planes (Viewing planes) are perpendicular to the principal axes of the MCS of the model
- The projection direction (viewing direction) coincides with one of the MCS axes

Geometric Transformations for Generating Orthographic Projection (Front View)

$$
P v=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] P
$$

Drop Z

Geometric Transformations for Generating Orthographic Projection
(Top View)

$$
\begin{aligned}
& P_{v}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \left(90^{\circ}\right) & -\sin \left(90^{\circ}\right) & 0 \\
0 \sin \left(90^{\circ}\right) & \cos \left(90^{\circ}\right) & 0 \\
0 & 0 & 0 & 1
\end{array}\right] P=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] P } \\
& {[R]_{x}^{90} }
\end{aligned}
$$

Rotations Needed for Generating Isometric Projection

$$
P_{v}=\left[\underline{-}_{-1}\right]_{\underline{x}}^{\phi}[R]_{y}^{\theta} P=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \phi & -\sin \phi & 0 \\
0 \sin \phi & \cos \phi & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] P
$$

Isometric Projection: Equally foreshorten the three main axes

$$
\theta= \pm 45^{\circ}, \phi= \pm 35.26^{\circ}
$$

Other Possible Rotation Paths

- Rx --> Ry

$$
r_{x}= \pm 45^{\circ}, r_{y}= \pm 35.26^{\circ}
$$

- Rz --> Ry(Rx)

$$
r_{z}= \pm 45^{\circ}, r_{y(x)}= \pm 54.74^{\circ}
$$

- $R x(R y)$--> $R z$

$$
r_{y(x)}= \pm 45^{\circ}, r_{z}=A N Y \text { ANGLE }
$$

