

What are **common** for an optimization problem?

- There are multiple solutions to the problem; and the optimal solution is to be identified.
- There exist one or more objectives to accomplish and a measure of how well these objectives are accomplished (measurable performance).
- · Constraints of different forms (hard, soft) are imposed.
- There are several key influencing variables. The change of their values will influence (either improve or worsen) the "measurable performance" and the degree of violation of the "constraints."

An Example Optimization Problem

Design of a thin wall tray:

The tray has a specific volume, *V*, and a given height, *H*. The design problem is to select the length, *l*, and width, *w*, of the tray.

Given

lwh = V h = H

A "workable design":

Pick either l or w and solve for others

- prove the result mathematically.
- verify the result using check points.

To find parameters
$$a, b, z \in C$$
, three function
evaluations are required at a_1, a_2, a_3 :
 $a + ba_1 + Ca_1^* = f(a_1) = f_1$
 $a + ba_3 + Ca_3^* = f(a_2) = f_2$
 $b = \frac{(f_1 - f_2) - C(a_1^* - a_2^*)}{a_1 - a_2}$
 $c = \frac{(f_1 - f_3)(a_1 - a_2) - (f_1 - f_3)(a_1 - a_3)}{(a_1^* - a_3^*)(a_1 - a_2) - (a_1^* - a_2^*)(a_1 - a_3)}$ numerator -2
denominator -1
 $a_1^* = -\frac{b}{2C}$ — necessary condition for the
optimum of H(a).

Point update schemes based on the relations between
the center point,
$$a_2$$
, (a_2) , and the present optimum: a' , $f(a')$.
after satting up the 3 points from Range Finding,
carry out an interpolation to calculate of $ef(a')$
i) If $f(a'') < f(a'_2)$
and $a_2 < a''_n < a'_3$
but $a_1 = a_2$, $a_2 = a''_n$
 $a_3 = a_3$ and recompute a''_n
i) If $f(a''_n) < f(a'_2)$
and $a_1 < a''_n < a'_3$
but $a_1 = a'_1$, $a_2 = a''_n$
 $a_3 = a'_3$ and recompute a''_n
 $a_3 = a'_3$ and recompute a''_n

3) If
$$f(\omega h) > f(\omega h)$$

and $\omega_{2} < \omega h < \omega_{3}$
Let $\omega_{1} = \omega_{4}$, $\omega_{2} = \omega_{4}$
 $\omega_{3} = \omega h$ and recompate ωh
4) If $f(\omega h) > f(\omega_{4})$
and $\omega_{1} < \omega h < \omega_{3}$
Let $\omega_{1} < \omega h < \omega_{3}$
 $\omega_{3} = \omega_{3}$ and recompate ωh
 $\omega_{3} = \omega_{3}$ and recompate ωh
 $\omega_{3} = \omega_{3}$ and recompate ωh
Repeat, until a "stopping rule" is satisfied.
NOTE: In 3) 2 4), Restart is required for efficient
convergence, if this hoppens repeatedly.
Restart: a range operation cruw about ω_{1} using;
 $t_{0} = min [1\omega_{3} - \omega_{0}], [1\omega_{3} - \omega_{1}]$

The non-gradient based rearch schemes work better with ill-behaved objective functions. They are less efficient. The gradient based rearch schemes are more efficient, but they are more remaitive to the shape of the objective function.

Formulation of Different Design Optimization Problem Best Performance Design – Lightest Coffee Mug		
Minimize Mass of the mug as a function of mug dimensions (D: Diameter, H: Height, T: Thickness) Objective Function Subject to		
	Mug Volume ≥ A Constant H/D = 1.65 D, H, T > 0)*, H^* , and T^*	Inequality Constraint Equality Constraint Variables Optimum

