Final Project and Pro/E Applications

Final Project - Application of Integrated CAD/CAE/CAM System for Optimal Design, Design Improvement or Soft-prototyping

- Time: March 5 31
- Content: Your Choice
- MECH410: Group of 2
- MECH520: Individual
- Project Presentation:
- Project Report Due:

March 31, Tue, (1:30 – 4:30 pm) ELW238 Computational Design Lab April 3

Three Project Options

- An Application of Integrated CAD/CAE/CAM System (Software: Pro/Engineer, UG NX 6, or SW)
 - creating the optimal (or at least functional) design of a new product with
 - performance analysis (structure, thermo, flow, dynamics, etc.), or
 - animation/simulation (motion, dynamics, manufacturing, etc.), or
 - improving a complex, existing design through analysis and/or simulation, or
 - creating demanding and complex design models.
- Interactive Graphics Programming in CAD
- An Application of Integrated CAD/CAE/CAM System Using Other Packages

A 3-5 minute slide presentation (4-6 slides) and program demonstration.

Format of the Project Report

Format

Title of the Project Names and Student Numbers Abstract (50 – 100 words) Table of Contents

- 1. Introduction (Description of the Project, Problem Definition, Theory or Algorithm)
- 2. Implementations
- 3. Technical Challenges
- 4. Special Features and Highlights
- 5. Summary (Experience and Suggestions)

References

Appendix

- A. Important figures, drawings, calculations, etc.
- B. Electronic copy of all related and necessary Pro/E files and other source codes.

Email the following documents to: mech410@me.uvic.ca

- A Microsoft PowerPoint Presentation (4-6 slides): LastName1_LastName2 (.ppt)
- Project report in MS Word named as: LastName1_LastName2 (.doc)
- The Pro/E model files with the same name as above (different extension name).

Laboratory Consultants:

- Mr. Minh Ly (Sen. Sci) Office: ELW B264, Local: 8893, and Email: mly@me.uvic.ca
- Leon Zhou (TA) Office: Email: ylzhou@me.uvic.ca

Scope of the Project

- Design, Analysis, Animation, Planning, Manufacturing and Optimization
- Mechanical Device, Assembly, Product and System
- Being able to show how CAD/CAE/CAM tools are used to obtain better design(s) by introducing:
 - design feedback and improvements
 - design optimization
- Any CAD/CAE/CAM Tool
- Interactive Graphical Programming
- . .

Example Projects

Air Conditioner Pump for a 1987 Merkur XR-4Ti

Chris Heynen & Brian Connors

Air Conditioner Pump for a 1987 Merkur XR-4Ti

Chris Heynen & Brian Connors

Modeling the Marzocchi Z.2 Atom Bomb Mountain Bike Shock

Aaron Lamb & Jon Baggett

- Assembly Modeling
- Stress Analysis on a Key Component

Modeling the Marzocchi Z.2 Atom Bomb Mountain Bike Shock

Aaron Lamb & Jon Baggett

Modeling and Analysis of Brodie Diablo Bike Frame

Walter Langer

- Frame Modeling
- Stress
 Analysis to Identify the Cause of the Failure

Modeling and Analysis of Brodie Diablo Bike Frame

Walter Langer

3D Mountain Bicycle Model

Lindsey Leu and Jenny Hoang

3D Mountain Bicycle Model

Lindsey Leu and Jenny Hoang

Fuel Cell E-Bicycle and Scooter Space Analysis

Onur Keskin

Fuel Cell E-Bicycle and Scooter Space Analysis

E. Lau & L. Horricks

Computer Modeling and Design of Fuel Cell Powered Low-Speed Electrical Vehicle Testing Stations

UVic Fuel Cell Bicycle Configuration

Richard V. Stackhouse

- This concept fuel cell powered bicycle shows the fuel cell system attached to a Rocky Mountain Bicycles RM6 full suspension bicycle.
- Due to the front motorized drive, the power system can be quickly and easily fitted to most bicycles, including full suspension.
- Two Wheel Drive Capability

Adaptable Electric Bicycle Power System

- Proof of power system configuration.
- Large mass better suited at back than front for adequate steering.

AEBPS Final Specs

Prototype Cost	~\$900 CDN (\$560 USD)
Electrical System	24 Volt EV Warrior System
Motor Controller	Curtis 1505 (20A Continuous, 80A (1
	Minute Rating))
Battery Pack	Currie Cycles 24V Sealed Lead Acid 12Ah
Motor Power Output	400 Watts (Max.) 200 Watts (Continuous)
Maximum Motor Torque	37 Nm
Maximum Bicycle Speed	18.5 km/h (Mounted on RM6 with 167
	lbm rider)
Throttle	Fully Variable Speed (Thumb Operated)
Total AEBPS Mass	14.9 kg (32.9 lbm)
Hub Motor Mass	3.6 kg (8 lbm)
Battery Pack Mass	9.8 kg (21.5 lbm)
Electrical System Mass	0.9 kg (2 lbm)
Topeak Beam Rack Mass	0.6 kg (1.4 lbm)

Formula SAE Competition Car Related

Figure 1: Team UVic race car

Figure 5: Current 3D model

SAE Formula Racecar Chassis and Modeling in Pro/ENGINEER

Jarvis Degroot & Greg Montie

Formula UVic Drivetrain Design

Richard Lewis and Justin Alexander

Vehicle Bumper Crash FEA Simulation and Design Optimization to Control Peak Deceleration and Increase Energy Absorption (J. Gu)

Modeling the Suspension of a Formula SAE Car

EcoCAR HEV Design and Analysis Using Unigraphics NX

Integrating the GM 2-Mode Transmission into the EcoCAR

Design Team: David Robinson, Degnan Hembroff and Michael Versteeg

EcoCAR HEV Design and Analysis

Electric Rear Wheel Drive Gearbox

Adam Binley, Jake Soepber, Kyle McWilliam, Bryce Donnelly, Yoshua Ichihashi & Sean Walsh

Engine Intake Design for the Uvic Formula SAE Race Car

Mech 410

Prepared by: Aaron Sandstorm Armando Tura

SAE Race Car Modeling and Analysis Using SolidWorks, FloWorks and Pro/E

This project was an opportunity to model and analyze the intake system for the Formula SAE race car, and to get familiar with the FloWorks. The analysis confirmed that, on first approximation, the design selected, even if not optimal, should be able to feed the engine in a satisfactory fashion. High performance output is expected from the fuel injected system planned for the next year car.

SolidWorks in conjunction with FloWorks, demonstrated to achieve results intuitively and quickly. A real test of the system will give a response on the reliability of the predictions. SolidWorks models proved to be easily exported into IGES and imported into Pro/E, expanding the possibility of this package. Modification of Intake Design with Added Venturi Restrictor

Figure 14: intake current configuration

Figure 16: alternative manifold

Figure 17: Pro/Engineer model

Von Mises _1.165e+004

1.068e+004 9.709e+003 8.739e+003 7.768e+003

Front BC Plate-STUDY :: Static Nodal Stress Units : psi

Modelling and Structural Analysis of a Frame Hitch Using Pro/ENGINEER, Pro/MESH and ANSYS

Daryl Brodie and Curran Crawford

Modelling and Structural Analysis of a Frame Hitch Using Pro/ENGINEER, Pro/MESH and ANSYS

Daryl Brodie and Curran Crawford

Mini-Stirling Engine Fan

Dean Lowe

- Design Modeling
- Production Drawings
- Motion Animation

Mini-Stirling Engine Fan

Dean Lowe

Joints and drivers on the Stirling engine fan

Mini-Stirling Engine Fan Dean Lowe

Parametric Modeling of an ROV

Chris Lyons, and Alex Wigzell

Parametric Modeling of an ROV

Chris Lyons, and Alex Wigzell

Computer Modeling of a Remotely Operated Underwater Vehicle

Chris Dicken and Mark Tsui

Computer Modeling of a Remotely Operated Underwater Vehicle

Chris Dicken and Mark Tsui

Concept Fuel Cell Stack Modeling and Analysis

Fuel Cell Stack Modeling and Analysis

M.M. Rao

FEA Mesh Generation of Fuel Cell Stack

FEA Fuel Cell Stack Stress and Compression Analysis

Modeling and Optimization of Fuel Cell Stack Endplate

Jeff Wishart

Structural Analysis

- Pressure load on place of Endplate from spacer and from four bolts/nuts: 0.5MPa and 0.125MPa, respectively
- Actual load causes 4µm of displacement: too small for Pro/E to handle
- Artificial Pressure loads of 20000 and 5000 MPa used
- Maximum Displacement: 4.518mm
- Maximum Von Mises Stress: 37GPa

Bowed Endplate Design

- Radius of curve (bow) calculated such that the maximum distance from curved surface to original dimension equal to maximum displacement value (4.518mm), and then varied decreasingly to zero
- Maximum Displacement: 8.07mm
- Maximum Von Mises Stress: 90GPa

Modelling a Lightweight Solid Fuel Backpacking Stove

Scott Borstad

7.333e+002 6.667e+002 6.000e+002 5.333e+002

4.667e+002 4.000e+002 3.333e+002 2.667e+002

2.000e+002 1.333e+002 6.667e+001

1000e+000

Color Filter Slide Assembly Animation

Alexis Hill and Ben Townsend (SolidWorks)

target object

3-D MODELING AND DESIGN OPTIMIZATION OF HYDRAULIC JACK

ADEL YOUNIS

- The model showed low maximum stresses (σ = 1.958e+06 lbm/sec^2/in^2) under the design load.
- The design optimization result by selecting the pin diameter d=1.5" of the lifting arm also proved to be the Best Design:

d₇₂(Pin diameter)=1.5" Goal: 1.1809e+02

Universal Cable Weight Machine

Hamid Abdollahi and Richard Chan

Model

Process

Modeling and Assembly using

Inventor 5.0

ANSYS IGES reader converts IGES information into Parasolid data

CAMTASIA: Complete solution for recording, editing and publishing screen videos

Animation Simulation

ANSYS

Ansys Results

Deformation

Stress

CAD Applications through Interactive Graphical Programming in AutoCAD

Digitale - Data - Destruction

I C WORK RECORD DURING DOT 1 - NO

Interactive Graphics Programming in CAD

General Requirement

One option of the final project is to develop an AutoCAD ADS Interactive Graphical Program. You can pick up a subject of your own choice, develop the 3D interactive graphics program within AutoCAD using ADS, and present the results to the class.

AutoLISP and ARX might be used as alternative programming environments with the permission from the instructor. The project can be of any types within the general scope of engineering applications. However, interactive graphical programming must be an evident part of the project.

Example Projects

The following is a list of some of the *MECH4101520* projects done by previous students. The graphical outputs of some projects are attached.

Design Automation

- An Interactive Deck Design and Visualization Program Using AutoCAD and API (3D ADS)
- An Interactive Program for Tent Cutting Pattern Generation Using GKS
- Automated Bolt Design in AutoCAD, Bolt-CAD
- An Interactive Program for Designing A Tension Structure in AutoCAD
- A General Logo Making Program Using AutoCAD and ADS
- An Interactive Logo Design Program in Borland C
- Interactive Camshaft Design and Simulation
- Gear Pair Design and Simulation Using ADS and API
- A Program for Automated Geometric Tolerance Specification and Dimension Chain Database Formation in AutoCAD Environment

Tent Cutting Pattern Generation

Computer Animation

- An Interactive Robot Solid Modeling and Animation Program Using AutoCAD
- Interactive Robot Animation Using PHIGS
- Robot Simulation Using GKS
- Animation of a Four Cylinder Engine
- Visualization of Satellite Orbit
- Interactive Vehicle Control and Simulation
- Animation of Axisymmetric Potential Flow about a Rankine Half-Body of Revolution Fluid How Modeling of a Rankine Half Body and a Doublet

Robot Animation I

Robot Animation II

Airfoil Generation Using AutoCAD[™] ADS Programming Gonçalo Pedro

Airfoil Generation Using AutoCADTM Gonçalo Pedro

