Example Problem 1 - Geometric Transformation

Reflection of a point $P(x, y, z)$ about the $x-z$ plane introduces a new point $P^{\prime}(x,-y, z)$. A plane is defined by the points $A(0,0,0)$, $B(0,2,0), C(1,2,1)$ and $D(1,0,1)$. Develop a transformation matrix to make reflections of points about this plane and yield results defined in the original x, y, z space. Apply your matrix to the point E at $(1,1,0)$ to obtain its reflection.

(1) Rotate $A D C B$ about $y 45^{\circ}$

$$
R_{y}=\left[\begin{array}{cccc}
\cos 45^{\circ} & 0 & \operatorname{sen} 45^{\circ} & 0 \\
-\sin 45^{\circ} & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \cdot \quad . \quad C=R_{y} M_{z y} R^{-1}=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(3) Mirror about du yoz plane. $E^{\prime}=E C=\left[\begin{array}{lllll}0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 1\end{array}\right] \begin{aligned} & x \\ & y \\ & z\end{aligned}$

$$
\operatorname{Mzy}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \therefore \quad \text { point } E \text { is at }\left(\begin{array}{llll}
0 & 1 & 1
\end{array}\right)
$$

Example Problem 2 - Geometric Transformation

A line connects the point A at $(1,0,0)$ to the point B at $(1,0,1)$. A second line extends from C at $(1,0,2)$ to D at $(1,1,2)$. Rotate line $A B$ about line $C D$ using vector-matrix methods. The rotation should be 60° counter-clockwise if the angle is viewed from the direction of D-to-C.

$$
\begin{gathered}
\Phi C D \rightarrow Y \text { Writ } \\
\quad[D]=\left[\begin{array}{cccc}
1 & 0 & 0 & -C_{A} \\
0 & 1 & 0 & -C_{y} \\
0 & 0 & 1 & -C_{z} \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -2 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Rotate $A B$ about $C D 60^{\circ}$.

$$
\left[R_{y}\right]=\left[\begin{array}{ccc}
\cos \theta 0^{\circ} & 0 \sin 60^{\circ} & 0 \\
0 & 0 & 0 \\
-5 \sin 60^{\circ} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
& 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0.5 & 0 & -866 & 0 \\
0 & 1 & 0 & 0 \\
-866 & 0 & 0.5 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
{[T]=[D]^{-1}\left[R_{y}\right][D]=\left[\begin{array}{cccc}
0.5 & 0 & 0.866 & -1.232 \\
0 & 1 & 0 & 0 \\
-0.866 & 0 & 0.5 & 1.866 \\
0 & 0 & 0 & 1
\end{array}\right] \quad B^{\prime}=[T] B=\left[\begin{array}{c}
0.134 \\
0 \\
1.5 \\
\uparrow^{2}
\end{array}\right] } \\
A^{\prime}=[T] A=\left[\begin{array}{c}
-0.732 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

Example Problem 3 - Generation of Projection View

Point A is at $(0,20,0)$ and point B is at $(0,0,0)$. The line $A B$ is to be viewed from $(50,0,0)$ looking directly at point A. The display surface is 25 units from the viewer (between the viewer and the object). What is the image of the line AB on the display coordinates? Use a methodical matrix approach of a type described in class.

Example Problem 3 Generation of Projection View

$$
\begin{aligned}
& \text { (s) } \\
& T=\left[\begin{array}{cccc}
1 & 0 & 0 & -26.8 \\
0 & 1 & 0 & -9.3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{2} \quad R_{x}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos 90^{\circ}-\sin 90^{\circ} & 0 \\
0 & \sin 90^{\circ} & \cos 90^{\circ} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text {, } \\
& R z=\left[\begin{array}{cccc}
\cos 180^{\circ}-\sin 180^{\circ} & 0 & 0 \\
\sin 180^{\circ} & \cos 180^{\circ} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \xrightarrow[T_{v}]{a} \underset{\sim}{y} 180^{\circ}
\end{aligned}
$$

Example Problem 3 Generation of Projection View

$$
R_{z} R_{y} R_{x} T=\left[\begin{array}{cccc}
-0.37 & -0.93 & 0 & 10.8 \\
0 & 0 & 1 & 0 \\
-0.93 & 0.37 & 0 & 24.6 \\
10.8 & 0 & 24.6 & 1
\end{array}\right]
$$

$$
P^{\prime}=R_{z} R_{Y} R_{X} T P
$$

$$
D_{p p}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
P^{\prime \prime}=D_{p p} P^{\prime}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1
\end{array}\right]^{\top}
$$

Example Problem 4 Generation of Projection View

If the three point $A=(1,0,0)^{\top}, B=(0,1,0)^{\top}$ and $C=(0,0,1)^{\top}$ is viewed from the point $D=(2,3,0)^{\top}$ via looking at the origin $\mathrm{O}=(0,0,0)^{\top}$, and using a projection plane 2 units away from point D (between O and D). Determine the parallel projections (\because and v coordinates) for point A, B and C.

(1) Geometry.

$$
\begin{aligned}
& \tan \theta=\frac{2}{3}, \quad \theta=33.69^{\circ} \\
& X_{0^{\prime}}=2-2 \sin 33.69^{\circ}=0.89 \\
& X_{0^{\prime}}=3-2 \cos 33.69^{\circ}=1.336
\end{aligned}
$$

(1) $0^{\prime} \rightarrow 0 \quad\left[\begin{array}{llll}0.89 & 1.336 & 0\end{array}\right]^{\top} \rightarrow 0$.
(B) $R_{z}=33.69^{\circ}$
(3) $R_{x},-90^{\circ}$
(4) $C P=\left[\begin{array}{lll}0 & 0 & -2 \\ u_{p} & v_{r} & n_{r}\end{array}\right]^{r}$

Example Problem 4 Generation of Projection View

$$
\begin{aligned}
& 10[T]_{0.0^{\circ}}=\left[\begin{array}{cccc}
1 & 0 & 0 & -0.89 \\
0 & 1 & 0 & -1.336 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& \Rightarrow[R]_{z}^{33.69^{\circ}}=\left[\begin{array}{cccc}
\cos 33.69^{\circ} & -\sin 33.69 & 0 & 0 \\
\sin 33.69 & \cos 33.69 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& 3[R]_{x}^{-90^{\circ}}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Example Problem 5 - Half Space, Solid Modeling

Problem 1

For the solid model shown in Figure 1, give its solid model representation using appropriate "half-space" definitions and logical operations.

Fig 1

$$
\begin{array}{llrl}
H_{1}:\{(x, y, z): y>-5\} & H_{5}:\{(x, y, z): z<4\} & H_{9}:\left\{(x, y, z): x^{2}+y^{2}<25\right\} \\
H_{2}:\{(x, y, z): x<20\} & H_{6}:\{(x, y, z): z>0\} & & \\
H_{3}:\{(x, y, z): y<5\} & H_{1}:\{(x, y, z): z<10\} & \text { or: } & H
\end{array}
$$

Intersections Union Intersections

Example Problem 6 - Optimization

A design optimization problem is formulated as

$$
\begin{array}{lc}
\min _{x_{1}, x_{2}} & x_{1}^{2}+4 x_{1}+x_{2}^{2}+2 x_{2}+5 \\
\text { s.t. } & x_{2}=x_{1}+1 \\
& x_{1}+x_{2} \leq 2 \\
& x_{1} \geq 0 ; x_{2} \geq 0
\end{array}
$$

- Rearrange this formulation into the standard form for design optimization
- Find the close-form solution of the unconstrained optimization with no design constraints
- Graphically illustrate the solution of the design optimization and identify the solution of the original constrained optimization problem

Example Problem 6 - Optimization

Rearrange this formulation into the standard form for design optimization

$$
\begin{gathered}
\min _{x_{1}, x_{2}} x_{1}^{2}+4 x_{1}+x_{2}^{2}+2 x_{2}+5 \\
\text { s.t. }-x_{1}+x_{2}-1=0 \\
x_{1}+x_{2}-2 \leq 0 \\
-x_{1} \leq 0 \\
-x_{2} \leq 0 \\
\bar{x}=\left[x_{1}, x_{2}\right]^{T}
\end{gathered}
$$

Example Problem 6 - Optimization

Find the close-form solution of the unconstrained optimization with no design constraints

$$
\left.\begin{array}{rl}
f\left(x_{1}, x_{2}\right) & =x_{1}^{2}+4 x_{1}+x_{2}^{2}+2 x_{2}+5 \\
& =x_{1}^{2}+4 x_{1}+\left(x_{1}+1\right)^{2}+2\left(x_{1}+1\right)+5 \\
& =2 x_{1}^{2}+8 x_{1}+8=2\left(x_{1}+2\right)^{2}
\end{array}\right\} \begin{aligned}
\frac{d f\left(x_{1}, x_{2}\right)}{d x_{1}} & =x_{1}+2=0 ; x_{1}^{*}=-2 ; x_{2}^{*}=x_{1}^{*}+1=-1 \\
\bar{x}^{*}= & {\left[x_{1}^{*}, x_{2}^{*}\right]^{T}=[-2,-1]^{T} }
\end{aligned}
$$

This is the solution without considering the constraints!

Example Problem 6 - Optimization

- Graphically illustrate the solution of the design optimization and identify the solution of the original constrained optimization problem

