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A PEM Fuel Cell 
Stack Multi-

Functional Panel with 
Ideal Stiffness – to 
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Thermal- and Hydro-
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Calculated Stiffness):
Find a panel design with 

the ideal stiffness.



Minimum Maximum 
Stress in the Structure

Optimized Groove Dimension 
to Avoid Stress Concentration 
or Weakening of the Structure



Engineering Applications of Optimization

• Design - determining design parameters that lead to the best 
“performance” of a mechanical structure, device, or system. 
“Core of engineering design, or the systematic approach to design”
(Arora, 89)

• Planning
– production planning - minimizing manufacturing costs
– management of financial resources - obtaining maximum profits
– task planning (robot, traffic flow) - achieving best performances

• Control and Manufacturing - identifying the optimal control 
parameters for the best performance (machining, trajectory, etc.)

• Mathematical Modeling - curve and surface fitting of given data 
with minimum error

Commonly used tool: OPT function in FEA; MATLAB Optimization Toolbox



What are common for an 
optimization problem?

• There are multiple solutions to the problem; and the 
optimal solution is to be identified.

• There exist one or more objectives to accomplish and a 
measure of how well these objectives are accomplished 
(measurable performance).

• Constraints of different forms (hard, soft) are imposed.
• There are several key influencing variables.  The change 

of their values will influence (either improve or worsen) 
the “measurable performance” and the degree of 
violation of the “constraints.”



• Optimization can provide either 
– a closed-form solution, or
– a numerical solution.  

• Numerical optimization systematically and efficiently adjusts the 
influencing variables to find the solution that has the best performance, 
satisfying given constraints.

• Frequently, the design objective, or cost function cannot be expressed 
in the form of simple algebra.  Computer programs have to be used to 
carryout the evaluation on the design objective or costs.  For a given 
design variable, α, the value of the objective function, f(α), can only be 
obtained using a numerical routine.  In these cases, optimization can 
only be carried out numerically.

e.g.  Minimize the maximum stress in a tents/tension structures using FEA.

Solution Methods

Computer Program
(no simple algebra)α f(α)



Definition of Design 
Optimization

An optimization problem is a problem in 

which certain parameters (design variables)

needed to be determined to achieve the 

best measurable performance (objective 

function) under given constraints.



• Type of design variables
– optimization of continuous variables
– integer programming (discrete variables)
– mixed variables

• Relations among design variables
– nonlinear programming  
– linear programming

• Type of optimization problems
– unconstrained optimization
– constrained optimization

• Capability of the search algorithm
– search for a local minimum
– global optimization; multiple objectives; etc.

Classification of the Optimization Problems
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Automation and Integration
• Formulation of the optimization problems 

– specifying design objective(s)
– specifying design constraints
– identifying design variables

• Solution of the optimization problems 
– selecting appropriate search algorithm
– determining start point, step size, stopping criteria
– interpreting/verifying optimization results

• Integration with mechanical design and analysis
– black box analysis functions serve as objective and 

constraint functions (e.g. FEA, CFD models) 
– incorporating optimization results into design



An Example Optimization 
Problem

Design of a thin wall tray with minimal material:
The tray has a specific volume, V, and a given height, H. 
The design problem is to select the length, l, and width, 
w, of the tray.
Given

A “workable design”:

Pick either l or w and solve for others 

lwh V= h H=

lw V
H

=

lw

h



An “Optimal Design”
• The design is to minimize material volume, (or weight), 

where “T” is an acceptable small value for wall thickness.

Minimize

subject to

Design variables:  w, l, and h.
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Standard Mathematical Form

- objective function

Subject to - equality constraints

- inequality constrains

- variable bounds 

- design vector
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- for use of any available optimization routines 



Analytical (Closed Form) Solution
• Eliminate the equality constrains, convert the original problem into a 

single variable problem, then solve it.
from              h = H & l w H = V; solve for l:               
thus

from 

• Discard the negative value,  since the inequality constraint is violated.
• The optimal value for l:  
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Regenerator Convection Heat Transfer Coefficient



Regenerator Convection Heat Transfer Coefficient



Regenerator Convection Heat Transfer Coefficient



Regenerator Convection Heat Transfer Coefficient



Regenerator Convection Heat Transfer Coefficient



Regenerator Convection Heat Transfer Coefficient



Procedures for Solving an Eng. Optimization 
Problem

• Formulation of the Optimization Problem 
– Simplifying the physical problem
– identifying the major factor(s) that determine the performance or outcome 

of the physical system, such as costs, weight, power output, etc. – objective
– Finding the primary parameters that determine the above major factors         

- the design variables
– Modeling the relations between design variables and the identified major 

factor - objective function
– Identifying any constraints imposed on the design variables and modeling 

their relationship – constraint functions
• Selecting the most suitable optimization technique or algorithm to  

solve the formulated optimization problem.
- requiring an in-depth know-how of various optimization techniques.

• Determining search control parameters 
- determining the initial points, step size, and  stopping criteria of the 

numerical optimization
• Analyzing, interpreting, and validating the calculated results 

An optimization program does not guarantee a correct answer, one needs to
– prove the result mathematically.
– verify the result using check points.



Standard Form for Using Software Tools for 
Optimization (e.g. MatLab Optimization Tool Box)

Use of MATLAB 
Optimization Toolbox

Where m are the number of inequality constraints and q the number of 
equality constraints

Denoting the optimization variables X, as a n-dimensional vector, where the n 
variables are its componets, and the objective function F(X) we search for :

Regional constraints

Behavior constraints



Notes



Geometric Interpretation of the Objective 
Function

Use of MATLAB 
Optimization Toolbox

• The Objective function can be interpreted to be a 
surface of dimension n embedded in a space of 
dimension n+1. This is easy to visualize for a 2 
parameter problem.

• The optimization process can be compared to 
“mountain climbing in a dense fog, having as only tool 
an altimeter”.



Treatment of Constraints

• Equality constraints effectively reduce the dimensions of the 
design space by 1.

• Inequality constraints can be mathematically enforced by the 
introduction of penalty functions, so that a large value is added 
to the function when the constraints are violated. We can define
the penalty function P(X):

And the minimization process can be extended to the augmented function D(X): 



Exterior Penalty Functions
• Exterior penalty function is applied for 

Defining penalty function as: 



Exterior Penalty Functions



Exterior Penalty Functions - Example



Exterior Penalty Functions 
Example



Exterior Penalty Functions Example

F

F1

F2



Interior Penalty Functions
• Interior penalty function is applied for 

The augmented function D(X,ρ): 



Interior Penalty Functions

Given the augmented function



Interior Penalty Functions - Example



Interior Penalty Functions - Example


