
1

A Tutorial to ADS Programming under Windows NT

1. Background

A brief comparison between the three AutoCAD supported programming environments,
AutoLISP, ADS and ARX, and an introduction to ADS programming environment are
provided in the Introduction to Interactive Graphical Programming in AutoCAD. In this
section

2. Developing an ADS (R 13) Application Using Windows-NT and Microsoft
Visual C++

In the previous Introduction to C programming section, the procedure for composing,
compiling and running a C program was outlined. The same procedure is used here to
develop an ADS application. A sample program, sample.c, is used to demonstrate the
procedure.

 (1) Open the Microsoft developer studio
 Start→programs→Microsoft visual C++4.0→Microsoft developer studio

(2) Build a new project workspace
 File→New→project, workspace→Application (in type frame)→4

(in platform)→change location to "c:\temp\"→input your workspace name
"sample".

(3) Add the ADS library, winads.lib, to the compiling and building environment
Build→settings→Link→add: "c:\r13\win\ads\winads.lib"
to the object/library modules

(4) Add the path of ADS files to the compiling and building environment
Tools→options→directories→enter “c:\r13\com\ads” and “c:\r13\win\ads” in the
directory frame

(5) Insert user's files into the project workspace
 Insert→Files into project→insert the file “c:\temp\sample.c”

(6) Compile and build the executable file, <file_name>.exe
 Build→compile sample.c→build sample.exe

Note: The executable file, sample.exe, is created automatically under the directory:
“c:\temp\simple\debug\”

2

3. Variables, Types, and Values Defined in ADS

ADS defines a few data types for the AutoCAD environment. It also defines a number of
symbolic codes for values passed by functions (or simply for general clarity). Finally, it
declares and initializes a few global variables. The definitions and declarations appear in
the ADS header files.

3.1 General Types and Definitions

The types and definitions described in this section provide consistency between
applications and conformity with the requirements of AutoCAD. They also contribute to
an application's legibility.

3.1.1 Real Numbers

Real values in AutoCAD are always double-precision floating-point values. ADS
preserves this standard by defining the special type ads_real, as follows:

typedef double ads_real;

Real values in an ADS application are of the type ads_real.

3.1.2 Points

AutoCAD points are defined as the following array type:

typedef ads_real ads_point[3];

A point always includes three values. If the point is two-dimensional, the third element of
the array can be ignored; it is safest to initialize it to 0.

ADS defines the following point values:

#define X 0
#define Y 1
#define Z 2

Unlike simple data types (or point lists in AutoLISP), a point cannot be assigned with a
single statement. To assign a pointer, you must copy the individual elements of the array,
as shown in the following example:

newpt[X] = oldpt[X];
newpt[Y] = oldpt[Y];
newpt[Z] = oldpt[Z];

3

3.1.3 Transformation Matrices

The functions ads_draggen(), ads_grvecs(), ads_nentselp(), and ads_xformss() multiply
the input vectors by the transformation matrix defined as a 4´4 array of real values.

typedef ads_real ads_matrix[4][4];

The first three columns of the matrix specify scaling and rotation. The fourth column of
the matrix is a translation vector. ADS defines the symbol T to represent the coordinate of
this vector, as follows:

#define T 3

The matrix can be expressed as follows:

M M M M

M M M M

M M M M

M M M M

00 01 02 03

10 11 12 13

20 21 22 23

00 00 00 10

The following function initializes an identity matrix.

void ident_init(ads_matrix id)
{
int i, j;
 for (i=0; i<=3; i++)
 for (j=0; j<=3; j++)
 id[i][j] = 0.0;
 for (i=0; i<=3; i++)
 id[i][i] = 1.0;
}

The functions that pass arguments of the ads_matrix type treat a point as a column vector
of dimension 4. The point is expressed in homogeneous coordinates, where the fourth
element of the point vector is a scale factor that is normally set to 1.0. The final row of the
matrix has the nominal value of [0 0 0 1]; it is ignored by the functions that pass
ads_matrix arguments. In this case the following matrix multiplication results from the
application of a transformation to a point.

=

0.10.1 10000000

23222120

13121110

03020100

'

'

'

Z

Y

X

MMMM

MMMM

MMMM

MMMM

Z

Y

X

4

or,

23222120
'

13121110
'

03020100
'

MZMYMXMZ

MZMYMXMY

MZMYMXMX

+++=

+++=

+++=

3.1.4 Entity and Selection Set Names

In AutoLISP the names of entities and selection sets are pairs of long integers. ADS
preserves this standard by defining such names as an array type, as follows:

typedef long ads_name[2];

As with ads_point variables, ads_name variables are always passed by reference but must
be assigned element by element.

You can also copy an entity or selection set name by calling the ads_name_set() macro.
As with ads_point_set() and ADS functions, the result is the second argument to the
macro.

The following sample code sets the name newname to equal oldname.

ads_name oldname, newname;
if (ads_entnext(NULL, oldname) == RTNORM)
ads_name_set(oldname, newname);

3.1.5 Useful Values

ADS defines the following preprocessor directives:

#define TRUE 1
#define FALSE 0
#define EOS'\0' /* String termination character */

The PAUSE symbol, a string that contains a single backslash, is defined for the
ads_command() and ads_cmd() functions, as follows:

#define PAUSE "\\" /* Pause in command argument list */

5

3.2 Result Buffers and Type Codes

A general-purpose result buffer (resbuf) structure handles AutoCAD entities and other
objects.

3.2.1 struct resbuf

The following result-buffer structure, resbuf, is defined in conjunction with a union,
ads_u_val, that accommodates the various AutoCAD and ADS data types, as follows:

union ads_u_val {
ads_real rreal;
ads_real rpoint[3];
short rint; /* Must be declared short, not int */
char *rstring;
long rlname[2];
long rlong;
struct ads_binary rbinary;
};

struct resbuf {
struct resbuf *rbnext; /* Linked list pointer */
short restype;
union ads_u_val resval;
};

3.2.2 Result Type Codes Defined by the ADS Library

The restype field of a result buffer is a short integer code that indicates which type of
value is stored in the resval field of the buffer. For results passed to and from ADS library
functions, the ADS library defines the result type codes listed in the following table.

Code Description

RTNONE No result value
RTREAL Real (floating-point) value
RTPOINT 2D point (X and Y; Z == 0.0)
RTSHORT Short (16-bit) integer
RTANG Angle
RTSTR String
RTENAME Entity name
RTPICKS Selection set name
RTORINT Orientation
RT3DPOINT 3D point (X, Y, and Z)
RTLONG Long (32-bit) integer
RTVOID Void (blank) symbol
RTLB List begin (for nested list)
RTLE List end (for nested list)
RTDOTE Dot (for dotted pair)
RTT AutoLISP t (true)
RTNIL AutoLISP nil

6

RTDXF0 Group code zero for DXF lists

3.3 ADS Application Request and Result Type Codes

This section lists the AutoLISP request and ADS application result codes returned by
ads_link() and described in "ADS Application Request and Result Codes".

3.3.1 Request Codes

The following table shows the possible AutoLISP request codes.

Code Description

RQXLOAD Loading the application. Define external
functions. Equivalent to the ARX message
kLoadADSMsg.

RQXUNLD Unloading the application. Equivalent to
the ARX message kUnloadADSMsg.

RQSUBR Evaluating an external function. Related
to the ARX message kInvkSubrMsg.

RQSAVE Saving the drawing (SAVE or SAVEAS).
Equivalent to the ARX message kSaveMsg.

RQEND Ending the drawing (END, NEW, or OPEN).
Equivalent to the ARX message kEndMsg.

RQQUIT Quitting the drawing¾no save (QUIT).
Equivalent to the ARX message kQuitMsg.

RQCFG Returning from CONFIG. Equivalent to the
ARX message kCfgMsg.

3.3.2 Result Type Codes

The following table shows the valid application result type codes.

Code Description

RSRSLT Valid result
RSERR Error in evaluation; no result

3.4 ADS Library Function Result Type Codes

The following result type codes are the status codes returned by most ADS library
functions to indicate success, failure, or special conditions (such as user cancellation).

7

Library function result type codes

Code Description

RTNORM User entered a valid value

RTERROR The function call failed

RTCAN User entered Ctrl + C

RTREJ AutoCAD rejected the request as invalid

RTFAIL AutoLISP communication failed

RTKWORD User entered a keyboard or arbitrary text

The meanings of these codes, summarized in the table, are as follows:

RTNORM The library function succeeded.

RTERROR The library function did not succeed; it
encountered a recoverable error.

The RTERROR condition is exclusive of the following special cases:

RTCAN The AutoCAD user entered Ctrl + C to
cancel the request. This code is returned
by the user-input (ads_getxxx) functions
and by the following function ads_command,
ads_cmd, ads_entsel, ads_nentselp,
ads_nentsel, and ads_ssget .

RTREJ AutoCAD rejected the operation as invalid.
The operation request may be incorrectly
formed, such as an invalid ads_entmod()
call, or it simply may not be valid for
the current drawing.

RTFAIL The link with AutoLISP failed. This is a
fatal error that probably means AutoLISP
is no longer running correctly. If it

detects this error, the application should
exit. (Not all applications check for this
code, because the conditions that can lead
to it are likely to hang AutoCAD, anyway.)

RTKWORD The AutoCAD user entered a keyword or
arbitrary input instead of another value
(such as a point). The user-input
ads_getxxx() functions, as well as
ads_entsel, ads_nentselp, ads_nentsel,
and ads_draggen, return this result code.

8

4. General Utility Functions

The ADS library provides a variety of functions for examining the drawing currently
loaded in the drawing editor, for example, modifying this drawing, interacting with the
AutoCAD user or with AutoLISP functions, and so on. This section provides a
description of several of the most commonly used utility functions. Many of the utility
functions are analogous to functions built in to the AutoLISP language.

ads_command() -- This is the function for accessing AutoCAD. The argument pairs of
this function either specify options or hold data, whatever the specified as a returning
value. For example, a circle centered at (0,0) and passing through (3,3) can be generated
by:

ads_command(RTSTR,”circle”,RTSTR,”0,0”,RTSTR,”3,3”,0)

ads_getvar()and ads_setvar() -- These two library functions enable ADS applications to
inspect and change the value of AutoCAD system variables. A string is used for specifying
the variable name, and a result buffer is used for giving the type and value of this variable.
For instance:

ads_getvar(“TEXTSTYLE”,&rb);

ads_getint(), ads_getreal(), ads_getpoint(), etc. -- The ADS user-input or ads_get*()
functions are counterparts to the (get*)functions in AutoLISP. Each of these functions
pauses for the user to enter data of a specified type, and passes the entered value to an
argument. For example, a real number, an integer and a point can be interactively obtained
from the user by:

ads_getreal(“Enter the radius of the nut:”,&radius1);
ads_getint(“Specify the number of sides:”,&N_Sides);
ads_getpoint(“Specify the center:",center);

ads_entlast -- Finds the last entity in the drawing.
int ads_entlast(ads_name result);

Sets result to the name of the last main entity in the drawing database. The last entity is
selected even if it is not on screen or is on a frozen layer, but a nongraphical object cannot
be selected. The last entity is the most recently created entity, so ads_entlast() can be used
to obtain the name of an entity that has just been added by a call to ads_command(),
ads_cmd(), or ads_entmake() (a complex entity does not appear in the database until it is
complete).

If ads_entlast() succeeds, it returns RTNORM; otherwise, it returns RTERROR. When
ads_entlast() fails, it sets the system variable ERRNO to a value that indicates the reason
for the failure.

9

5. Loading, Listing AND Unloading ADS Application

◊ Loading ADS Application
To load a compiled ADS application, use the AutoLISP (xload) function, which is
analogous to the (load) function used for application written in AutoLISP. The
AutoLISP (xload) function requires the file name of the compiled ADS program.
There are two ways to load a application.
(1) Loading programs manually in command line, for example:

 (xload”c:/temp/sample/debug/sample”).

(2) Use mouse in AutoCAD drawing editor to load ADS applications, for example:
 Tools→Applications→File→*.exe(in list files of type)→c:(in
drives)→c:/temp/sample/debug/(in directories)→sample.exe(in File name)

◊ Listing loaded ADS Application
To list the names of all ADS programs that are currently loaded on screen, enter the
AutoLISP function (ads) function returns a list of strings. Each string is the name of a
loaded ADS program.

◊ Unloading ADS Application
The opposite of (xload) is (xunload). This takes the application out of the memory of
AutoCAD. There is no need for the full path name, just the name of the application.
For example: (xunload”sample”)

6. A Sample ADS Program

In this section a sample ADS program, sample.c, is used to illustrate ADS functions and
the way in which an ADS program communicates with AutoCAD using ADS libraries.
As a matter of fact, the communication is very straightforward; we can just send string
commands to AutoCAD in an ADS program just like we would enter these commands at
the AutoCAD command line, followed by coordinates and numerical values. The sample
program is written using only ADS functions to avoid potential system crash. When your
ADS program crashes AutoCAD will still be functional.

This sample program draws polygons, nuts, frame and squares as well as displays the
modeled geometry in 2D and 3D. A step by step explanation of the program is given in
this section.

6.1 ADS Communication, Variable and Environment Setup

A major part of an ADS program is used to set up the proper communication between
AutoCAD and the developed ADS application, the ADS variables and the connections to
external functions.

◊ Head files

10

The program starts by introducing four header files. Among those, stdio.h, string.h
and math.h are normal C include files. The other head file, adslib.h, defines functions
and constants used for communicating with AutoCAD using ADS library. This file can
be found under the directory: c:\r13\com\ads\.

◊ Declare functions
Following the included header files are function declarations. These are called function
prototypes. The role of these function declarations is to allow the compiler to detect
errors in these functions. It is always a good idea to use function prototypes to ensure
the correctness the composed functions. Some modern compilers will warn the user if
function prototypes are not present for every function called. The body of each
function is specified later in the program file.
These functions are declared static, thus they are only accessible in the program
sample.c, and are not visible to other C files. Some compilers are able to use this
information to produce smaller executable files, stopping the functions being visible to
unrelated C files. Large ADS applications often have many user commands. Keeping
as many functions as local as possible (using the static keyword) leads to a shorter
compilation and linking cycle.

◊ Elements
The definition ELEMENTS allow the number of elements in an array to be extracted
and later used in the program.

◊ Command name
The struct func_entry associates a string with a function. The string is the command,
which a user will type at the AutoCAD command line to call the function. The
func_table of the sample ADS program consists of five entries: “polys”, “nuts”,
“frame”, "squares" and “test3d”. To extend the program, sample.c, with new
functions, you need to add the name of these functions to the contents and add your
new ADS functions as new commands.
The sign, C:, at the beginning of each string indicates that the function is callable
simply by typing the string at the command line, i.e. C: is equivalent to the statement:
"this is a user command". AutoLISP will recognize this convention sign.
ADS functions that are callable from outside the ADS application are called "external
functions". These function can be called either by a user (if defined with the C: prefix)
or by another application.

◊ Main function
The main function, main (), starts with an ads_init() (ignoring argc and argv) line,
which initiate the communication between ADS and AutoCAD. Following this line is
an infinite loop of the program. The program monitors and accepts instructions from
AutoCAD and carries out the received instructions. When a user types in a command
at the AutoCAD command line (or calls one via a menu or dialog box), for example
"POLYS", AutoCAD sees whether the entered line is one of its own commands, or a
command of an application program.

11

The ADS program is a slave of the AutoCAD. The function ads_link() at the
beginning of the for loop is always running, while our ADS program is not doing
anything most of the time. The ADS program only execute its tasks when ads_link()
returns control from AutoCAD to the ADS program with a status value. That status
value that ads_link() returns tells us what AutoCAD is requesting the ADS program to
do. In this example, there are only three things to do:

RQXLOAD: Define the ADS functions, which are known to AutoCAD and/or
available to a user, by calling func_load(). This value will appear when AutoCAD
starts up and a new drawing is loaded. func_load() is where one can carries out
initializations required by every drawing load. For simple ADS programs initialization
is not required for every drawing load.

RQSUBR: Execute one of the user defined ADS functions. This value will be
returned, for example, when a user types in one of the new commands that were
introduced in the ADS program.

RQXUNLD: The user defined ADS application is being unloaded (with the AutoLISP
(xunload filename) function), or AutoCAD is ending. At this time "tidy up"
operations, such as closing opened files, freeing allocated memory etc. needs to be
carried out. Any selection sets should be released.

◊ ROXLOAD
RQXLOAD and the other constants are defined in the header files under the ADS
directory of AutoCAD. By including <adslib.h> you have access to all the defined
data types and function prototypes required to communicate with AutoCAD. The
use the angle brackets < > can avoid the specification of the full directory path.
The path can be specified either using the DOS SET command in the
AUTOEXEC.BAT file, or through the OPTIONS menu of the C compiler.
Alternatively, one can use the full pathname in quotes, which will depend on where
AutoCAD was installed, e.g.

include "C: \R13\COM\ADS\ADSLIB.H"

The first thing that AutoCAD demands the ADS program is to define the functions
to be added to AutoCAD through RQXLOAD. funcload() is called and the result
of this attempt is passed to scode.

The function, funcload(), consists of a simple for loop repeatedly calling
ads_defun() (similar to (defun) of AutoLISP). ads_defun() associates the index of
the loaded functions with the name of the loaded functions. When AutoCAD calls
the new ADS functions it will use this index to identify the function. In this sample
program, the function, "C:polys", is associated with the index 0, and "C:nuts" is
associated with the index 1, etc.

12

In funcload() the ADS print function, ads_printf(), rather than the C print
function, printf(), is used. When we run the program under Windows the standard
C printf() function will not print anything. If we run the program under Extended
DOS printf() will probably print over the graphics screen, if at all. The ADS print
function, ads_printf(), will ensure the output to be printed on the text window of
AutoCAD and/or the command line of the graphics window.

ads_defun() returns a value to indicate whether the function is successfully
registered in AutoCAD. An error at any point will cause funcload() to abandon
the loading return the error message, RTERROR. If all goes well it returns
RTNORM. An error may occur if you intend to use a command that has the same
name as an existing AutoCAD command.

In the main function, main(), the result code, scode, recorded the success or failure of
the function load process.

Suppose that one has successfully loaded all ADS functions. The next time in the
infinite loop, ads_link() will probably return the status value, RQSUBR. This indicates
that AutoCAD is calling one of the ADS functions after the user has typed in one of
the ADS commands. In the ADS program the function dofun() is called. The function,
in turn, calls ads_getfuncode() to find which function has been requested. In this
sample program the function code is recorded in the variable Func_Code, and its value
will be either 0 or 1, since we have only defined two functions previously. A check is
made on Func_Code to ensure it is within the defined range recorded in the
ELEMENTS.

The composed ADS function is now executed by the code:

Ret_Val = (*func_table[Func_Code].func)();

If Func_Code is 0, this line of code is equivalent to

RetVal = polys_func();

If Func_Code is 1, this line of code is equivalent to

Ret_Val = squares_func();

We actually called one of the functions in the function table, func_table, using
Func_code to select the called function. The remainder of the dofun() simply returns
the value of Ret_Val, which signals to AutoCAD that the execution of the function is
completed.

13

◊ Summary of this section
The communication setup between the ADS program and AutoCAD as well as the
way various functions are handled seem quite complicated. This is determined by the
nature of the ADS programming environment. Since the ADS program is a slave of
the AutoCAD program, the ADS program only takes instructions from AutoCAD and
has minimum influence to the operation of AutoCAD. A fatal error in the ADS
program will just crash the ADS program itself. AutoCAD and its computer model
will not be influenced. This property makes ADS an ideal learning tool for interactive
graphical programming. To develop a more efficient program within AutoCAD, the
ARX programming environment is a better tool. An ARX function will be equivalent
to a built-in AutoCAD function.

As a ADS programmer, one can ignore the complicated communications between
ADS and AutoCAD, simply copy this part of the program UNCHANGED, and
concentrate on the user defined ADS functions.

For the sample program, we need only to worry the user defined functions:
polys_func(), nut_func(), frame_func(), squares_func() and test3d_func(). The ways
that these function are called and the returned values are passed to AutoCAD are
described by the previously stated procedures. You can add more ADS functions as
you wish from now on without having to change a single line of code in the
ADS/AutoCAD communication section. For this sample program, almost all the codes
between the first line of main() and the last line of dofun() can remain the same.

6.2 Drawing Nested Polygons

The role of the sample ADS function, poly_func(), is to obtain the information of a group
of polygons from a user interactively in AutoCAD and draw these nested polygons on the
screen.

A user can start AutoCAD, load the ADS program by typing in:
(xload “c:/temp/sample/debug/sample”) at the AutoCAD command line.
and then type in polys to run the program.

The program will prompt on the number of the sides of the polygon, the total number of
the polygons, the center location of the polygons, and the size (or radius) of the outer
polygon. The location and size of the polygons can be specified either by coordinates and
numbers, or by mouse controlled cursor positions (click at the center point and drag the
cursor to specify the desired size). The Control-C key under DOS or ESCAPE key under
Windows will terminate the "polys" commands and return to AutoCAD.

14

The poly_func() Function

◊ Definition of a constant TWO_PI of type ads_real.
This is an ADS compatible real number to ensure the portability of an ADS
program between compilers. Usually ads_real is defined as a double length
floating point number.

◊ Function definition of polys_func()
The defined function returns an integer that indicates whether the function has
been successfully executed.

◊ Specification of local variables
◊ A call to ads_retvoid()

The call tells AutoCAD that this function returns nothing to AutoLISP. Without
this call, you will get a NIL printed on the command line after you called "polys".
This is not a serious problem, but is irritating to the user. AutoLISP programmers
might like to know that ads_retvoid() can be thought of as the C equivalent of the
(princ) function.

◊ Data input
The number of sides of the polygon
The user's input is acquired using ADS get integer function, ads_getinc(). The line
prompt "Enter the number of sides of the polygon" and wait for the user to enter a
value. The first returned value is recorded in the integer variable Res. Res indicates
the success or failure of the function. As usual with AutoCAD, a user can abort the
operation by hitting ESCAPE in Windows, the ads_getint() will then return
RTCAN to Res. If a polygon side number is entered instead, RTNORM is returned
to Res. The second returned parameter, the number of sides of the polygon, is
recorded by another integer variable, N_Sides. The program checks whether
RTNORM has been returned. This second use of RTNORM is to let AutoCAD
know that the function ended OK, there were no errors, and it is just that the user
hit ESCAPE.
The number of the nested polygons
Again ads_getint() is used to acquire the number of the nested polygons that the
user wants to draw.
The location of the polygons
The location or center of the polygons is acquired by calling the ADS function,
ads_getpoint(). The function accepts a 3D point in AutoCAD of type ads_point,
defined as: typedef ads_point ads~rea1[3].
The 3D point is specified by its x, y and z coordinates, each of which is a real
number. ads_getpoint() has three parameters.
The first parameter of ads_getpoint() is either NULL or a valid ads_point. If it is
an ads_point then a rubber-band line is drawn from that point to the cursor
controlled by the mouse. If the first parameter is NULL no rubber band line is
drawn and the user sees only the cursor. The rubber band line can be used to help
orient the user if a point has to be selected relative to another point.
The second parameter of ads_getpoint() is the prompt issued to the user.
The last parameter is the place to put the result, i.e. the point selected by the user
(either by mouse or by typing), in our example Center.

15

The radius (or size) of the outer polygon
The ADS program acquire the dimension of the polygons by asking the radius of
the outer polygon using ADS get distance function ads_getdist(). This function
also has the rubber-banding option for mouse input. The Center acts as the starting
point of the rubber band line, and as the user moves the mouse the other end of the
rubber-band line moves with the cursor. A click on the mouse button determines
the radius of the outer polygon.
Both ads_getpoint() and ads_getdist() return RTCAN if the user aborts the
command.
A following for loop draws the sides of the polygons by repeatedly executing the
AutoCAD command "_LINE" through the ADS command:

Res = ads_command(RTSTR, “_LINE"....

ads_command() is a very important ADS function. It can be used to execute most
AutoCAD commands and pass the data needed by these commands. The command
and its prompted data are provided in a list, with RTNONE signaling the end of the
list (functioning as a return key).
In this list, RTSTR tells AutoCAD that the program is sending a command string:
"_LINE", while RT3DPOINT, tells AutoCAD that the program is sending a 3D
data point, either the start point Start or the end point, End. An empty string is
sent to exit from the AutoCAD _LINE command, and RTNONE to signal the end
of the list.
The ads_command() returns a status value: RTNORM if AutoCAD understood the
command, or RTERROR if AutoCAD failed to recognize the entered command.
Although this information is not used here. It is a good practice to check the
returned value of every ads_command() call.

