

Course Outline: MECH 345 Mechanics of Fluids I- Spring 2012

Course Web Info	: <u>http://moodle.uvic.ca</u> is the primary course info site <u>http://www.engr.uvic.ca/~rustomb/teaching/index.html</u> has this outline page only
Instructor: Office Location: Office Hours:	Rustom Bhiladvala EOW 521rustomb@uvic.ca Phone: 721-8616T 4-5 pm; email for other times.
Lecture Times: Lecture Location	Mondays & Thursdays 10:00-11:20 ECS 116
Tutorial Time: Tutorial Location	Wednesdays 12:30-13:20 n: ECS 116
Lab Times: Lab Location:	Section B01 Mondays 13:30-16:30 Section B02 Wednesdays 13:30-16:30 ELW A140
<i>Teaching Assista</i> Expt. 1 Expt. 2	Victor Keller <u>kellerv@uvic.ca</u> ELW_B260 4214 Behnam Rahimi <u>behnamr@uvic.ca</u> EOW_227 8699
Expt. 3 Expt. 4 Expt. 5	Majid Soleimanini Jonathan Reaume Ali Etratimajids@uvic.ca reaumejd@uvic.caELW_A248 ELW_A248 ELW_A2543182 3180
	YA Cengel, JM Cimbala. Fluid Mechanics. 2 nd edition, McGraw Hill. FM White, <u>Fluid Mechanics</u> , 6 th edition, McGraw Hill.

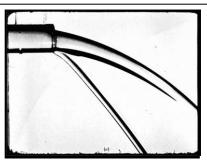
Prerequisite:

Math 200, Calculus of Several Variables

Course Description:

Properties of fluids. Basic flow analysis techniques. Basic concepts: velocity field, stress, flow patterns, classification of fluid motion. Fluid statics: pressure distributions, hydrostatic forces on submerged surfaces, buoyancy and stability. Integral analysis of fluid motion: conservation of mass, momentum balance, energy balance. Dimensional Analysis. Introduction to differential analysis of fluid motion. Internal flow in pipes and pipe systems. External flow past immersed bodies.

Labs:

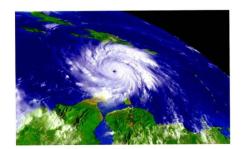

There are five laboratory exercises for this course. Lab information is posted on the moodle course site. Laboratory report requirements, background and a lab schedule will be made available in the second week of term. During the lab period, students will work in groups of five (lab sections coordinated with other core courses, Theory of Mechanisms MECH 335, Mechanics of Solids MECH 320 and Energy Conversion MECH390).

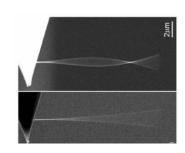
- Experiment #2 Linear Momentum Experiment (Hydraulics Bench, Jet Deflection Apparatus)
- Experiment #3 The Energy Equation in a Venturi-Type Flow (Hydraulics Bench, Venturi Apparatus)

Experiment #5 – Lift & Drag on Airfoils

Evaluation:

Experiment #4 – Friction in Laminar and Turbulent Pipe Flow (Oil Pipe Flow Apparatus & Air Pipe flow Apparatus)





Expplar sound (choinctiveal plaque)			
Canotist Artory	Y		Subsi Arber
Cephatik Velo	n	The	Palme
Autory Artery and Vein	(LALAS	174 12	- and V
Ascenting Aorta			Corona
Putershary Trum	1991	8. I.U. 1	(area
Cullas Arlery	100	2411	
Renal Artery	11th	1 344	Corona
Sagarer All	178 5	- CO)	Den
Hesenteris Avlary	1/1 =	1.0	_ Ars
Portal Veal	100	100	- lets
Radial Arlany	A 18	2	Ð
and Vain	TING ST	< 13	A
Anar Actory			N
		100	
Mana Cava	144 80	1 3	Parter
		4	- and he
Abdominal_		1	Poplar
		100	and Ve
Ultraceerd image			
(aneurysm)		HAIT	Alle
50	1894	1824	
Personal Artary	200	100	Pest
Tiblel Voin	THE R	U.K	-178
rienal Vean	JAC S	TRI	
	1 AVA	No.	
	Corp.		100

	laboratories are required to pass the course.
HW & HW_Quizzes:	(22%) Weekly HW, including upto 2 HW_Quizzes (2% or less).
Class Participation:	(3%) PreReq Quiz, Moodle-profile, I-Clicker responses in lecture. These help gauge understanding, and promote thinking and discussion. PreReq Quiz completion needed to earn any class participation marks. Wrong answers are not penalized for PreReq Quiz or I-Clickers.
Midterm Exam:	(20%) Thursday 23 rd February, 2012, 10:00-11:30 am.
Final Exam:	(40%) Students must pass the final in order to pass the course.

Lab Work & Reports: (15%) Attendance, participation and report completion for all five

Experiment #1 – Centre of Pressure and Hydrostatic Force on a Submerged Body (Hydrostatic Bench)

				SPR2012 MECH345: MECHANICS OF FLUIDS I	
	Μ	Th			Text: Ch-Secn
	Dat	tes	L#		
Jan					
		5	1	Fluids-liquids & gases.Using Fluid Mech. Thermofluids@UVic. Flow Classifications & Approximations.	1
	9		2	Properties & Behaviour: Density. Dyn & Kin Viscosity. Rheology. Vapour Pressure. SurfaceTension.	2
HW1		12	3	Problem solving: Applications of 1D Newtonian flows. Problems based on fluid properties.	2-7.*
	16		4	Hydrostatics: Pressure. Pasca'ls Law. Barometers, Manometers, Gauges. Newton's 2nd Law (fluid elem.)	3-1, 3-2, 3-3.
HW2		19	5	Hydrostatics: Standard Atmosphere. Buoyancy & Stability.	3-6. *
	23		6	Hydrostatics: Force on Submerged Plane Surfaces -Dams, Gates, Valves.	3-4.
HW3		26	7	Hydrostatics: Force on submerged curved surfaces. Rigid body motion.	3-5, 3-7.
	30		8	Elements of Flow Visualization. Reynolds Transport Theorem. Conservation of mass.	4-2,4-3,4-6,5-1,5-2.
Feb					
HW4		2	9	Integral Analysis. Reynolds Transport Theorem -CV Conservation of Linear Momentum. Examples.	6-1 to 6-4.
	6			Integral Analysis. Linear Momentum -Nozzles, Deflectors, Flanges, Estimating drag from velocity profiles.	6-4.
HW5		9		Integral Analysis. Bernoulli Equation -derivation; limitations of use. EGL/HGL and their use.	5-3, 5-4, 5-5.
	10			Reading Break	
		16		Reading Break	
	20		12	Applications of Bernoulli Equation -siphon, venturi, orifice, nozzle. Wind Turbines (Betz limit).	5-4, 6-4, 14-4(part)
		23	M	Midterm -tests material till the 20th/HW5.	
	27		13	Integral Analysis: Angular Momentum. Energy equation -systems with friction loss, pumps & turbines.	6-5, 6-6. 5-5, 5-6.
Mar					
HW6		1	14	Flow Kinematics. Eul/Lag. Material Deriv. Strain Rate tensor components.	4-1, 4-4, 4-5.
	5		15	Elements of Differential Methods: Mass, Mom, NS Eqns.	9-1 to 9-5 (Part).
HW7		8		Exact Solutions of NS -Couette, Pipe flow. Approx Soln Examples. Scope of CFD.	9-6 (Part).
	12		_	Dimensional Analysis:Pi Theorem. Expt Design -Geometic, Kinematic, Dynamic Similarity. Model Studies.	7-1 to 7-5. *
HW8		15		Non-Dim Param from Governing Eqns. Creeping Flow. Euler eqn. BL approx. BioFlows.	7-2. 10-1 to 10-4. *
	19			Internal Flow: Laminar & Turbulent flow -Reynolds number. Entrance Lengths. Non-circular ducts.	8-1 to 8-4.
HW9		22	20	Internal Flow: Reynolds' Averaging. Models. Mean velocity profile -inner, logarithmic, outer regions.	8-5. *

	26		21	Internal Flow: Friction Factor relations, Moody Chart. Major & Minor Losses. Pipe networks.	8-5 to 8-7.
H10		29	22	External Flow: Boundary Layer (BL) Approximation. BLs. Wind Tunnels. Pressure & Friction Drag.	10-6. 11-(1,2,3,5).
Apr	2		23	External Flow: Lift & Drag. Streamlined & bluff body flows. Airfoils. Applications.	11-3 to 11-7.
		5	24	External Flow. Some Fluid Mechanics film clips. Review for Final.	
				Text: Fluid Mechanics -Fundamentals & Applications. Y.A. Cengel & J.M. Cimbala.	
				* Additional material from reference text: Fluid Mechanics. F.M. White.	
				Additional material accessible from moodle include slides used in many of the classes, as well as links to	
				video clips exploring specific fluid phenomena (the NCFMF film serires).	