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This article presents a method for determining smooth and time-optimal path con-
strained trajectories for robotic manipulators and investigates the performance of
these trajectories both through simulations and experiments. The desired smoothness
of the trajectory is imposed through limits on the torque rates. The third derivative of
the path parameter with respect to time, the pseudo-jerk, is the controlled input. The
limits on the actuator torques translate into state-dependent limits on the pseudo-
acceleration. The time-optimal control objective is cast as an optimization problem by
using cubic splines to parametrize the state space trajectory. The optimization problem
is solved using the flexible tolerance method. The experimental results presented
show that the planned smooth trajectories provide superior feasible time-optimal
motion. Q 2000 John Wiley & Sons, Inc.

1. INTRODUCTION

The need for increased productivity in path-follow-
ing industrial robotic applications has been com-
monly addressed in the literature by determining

Ž .path-constrained time-optimal motions PCTOM
while accounting for actuator torque limits1 ] 3. In
these formulations, the joint actuator torques are
the controlled inputs and the open loop control

*To whom all correspondence should be addressed.

schemes result in bang-bang or bang-singular-bang
controls.1, 3, 4

PCTOM trajectories compute the maximum ve-
locity achievable at the robot tip while still follow-
ing the prescribed path. However, implementation
of PCTOM in physical manipulators has drawbacks,
such as joint oscillations due to finite joint stiffness
and overshoot of the nominal torque limits due to
unmodelled actuator dynamics. The resultant extra
strain on the robot actuators could cause them to
fail frequently,5 reducing the productivity of the
entire workcell.
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At the trajectory planning level, a number of
different techniques have been devised to address
the problem of discontinuous actuator torques. A
modified cost function, such as time-joint torques2

or time-square of joint torques,6 can be used to
smooth the controls and improve the tracking accu-
racy, at the expense of motion time.

Another way of smoothing the controls is to
parametrize the path by using functions that are at
least C 2 continuous, i.e., continuous in acceleration.
Cubic splines used for path parametrization with
time as the cost function7 result in trajectories that
have continuous joint accelerations. However, the
limits on the joint variables are very conservative,
since they remain constant over the entire work
space. Incorporating the actuator dynamics in this
problem formulation8 transforms the actuator volt-
ages into the limited controlled inputs. The optimal
trajectory is bang-bang in the new controls and the
actuator torques are no longer limited. Also, the
case of singular controls is not considered since they
can be avoided by an appropriate selection of
the path3 or by convexifying the set of admissible
controls.9

In this article, a method is presented for deter-
mining time-optimal path-constrained motions sub-
ject to limits on the actuator torques and the first
derivative of actuator torques, or ‘‘torque rates.’’
The resulting trajectories will be called smooth

Ž .path-constrained time-optimal motions SPCTOM
to distinguish them from the path-constrained

Ž .time-optimal motions PCTOM , which do not con-
sider torque rate limits.

The actuator torque rate limits are imposed in
view of the fact that unlimited changes in torque
can cause highly jerky motion and severe vibrations
in the arm that may lead to the failure of the
actuators themselves. Moreover, they are used as a
means to compensate for structure flexibility and
inaccuracies in the robot model. This is a desired
feature in industrial applications, where the robot
model is not readily available. Therefore, the benefit
of the SPCTOM trajectories is that they better char-
acterize the dynamic limitations of a robot system
and, hence, are suited for direct implementation on
a commercial robot using nonspecialized industrial
controllers.

Geometric limits on robot motion, such as ob-
stacles and joint limits, are not addressed herein,
since the motion is path-constrained. That is, only
the trajectory planning problem is considered. The
path is either imposed by the application itself or a
time-optimal path can be determined as in ref. 10:
Under the assumption that the desired path is

smooth, an initial guess is generated using splines
and the optimal path is found through an uncon-
strained parameter optimization. The cost function
is composed of the motion time along the path plus
penalty terms corresponding to obstacles and joint
limits.

2. SMOOTH PATH-CONSTRAINED
TIME-OPTIMAL MOTIONS

2.1. Problem Formulation

The problem of SPCTOM planning can be stated as

t f Ž .min Js 1 dt , 1H
˙ 0TgV

subject to the manipulator dynamics,

Ž . T Ž . Ž . Ž .M q qqq G q qqG q sT, 2¨ ˙ ˙

the boundary conditions,

Ž . Ž . Ž . Ž .q 0 sq ; q t sq ; q 0 sq t s0;˙ ˙0 f f f

Ž . Ž . Ž .q 0 sq t s0, 3¨ ¨ f

the path constraints,

Ž . Ž .rsr s , 4

the actuator torque limits,

Ž .T FTFT , 5min max

and the actuator torque rate limits:

˙ ˙ ˙ Ž .T FTFT , 6min max

where n is the number of degrees of freedom of the
manipulator. Furthermore, qgRn is the vector of
joint positions, TgRn is the vector of actuator

˙ n Ž .torques, TgR is the vector of torque rates, M q g
n=n Ž .R is the inertia matrix of the manipulator, C q

gRn=n=n is a third-order tensor representing the
coefficients of the centrifugal and Coriolis forces,
Ž . n 3G q gR is the vector of gravity terms, and rgR

is a C1 continuous curve parametrized by s, which
may be, for example, the arc length. To simplify the
dynamics, viscous and static friction terms have
been neglected. However, as shown in the experi-
ments in Section 5, the imposition of suitable torque
rate limits compensates for these and other model
inaccuracies.
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In the above formulation, the torque rates repre-
sent the bounded controls. Since the Lagrangian
form of the robot dynamics incorporates only the
actuator torques, the third-order dynamics is re-

Ž .quired. Differentiation of 2 with respect to time
results in

˙ T T ˙Ž . Ž . Ž . Ž .M q qqM q qqq C q qyq C q q& ¨ ¨ ˙ ˙ ˙
T ˙ ˙Ž . Ž . Ž .qq C q qqG q sT. 7˙ ¨
Ž .Equation 7 is taken as the dynamics of the

˙system, with T representing the n-dimensional
bounded controls.

2.2. Path Constraints

Ž .The dynamic system described by Eq. 7 has 3n
degrees of freedom. However, the path constraints
Ž .4 parametrize the end-effector tip position by a
single parameter s, reducing the order of the system
to 3.

To obtain the torque rate bounds for the re-
duced order system, the joint jerk is computed as

ZZZZZ 3 YYYYY Ž .qsq s q3 ?q ?ssqq99999 s, 8& &˙ ˙̈
where

d2J dJ
ZZZZZ y1 ZZZZZ XXXXX YYYYY Ž .q sJ ? r y ?q y2 ? ?q , 92ž /dsds

d2J dJ
ZZZZZ XXXXX YYYYY ZZZZZ Ž .r s ?q q2 ? ?q qJ ?q , 102 dsds

with r being the end-effector position and orienta-
tion, J being the Jacobian of the forward kinematics
map, and 99999 denoting the derivative with respect to

Ž . Ž .the path parameter. Substituting Eqs. 7 and 8
Ž .into Eq. 6 yields

˙ 3 ˙Ž . Ž . Ž . Ž .T Fa s ?sqb s ?s ?sqc s ?s qd s ?sFT ,& ˙ ¨ ˙ ˙min max

Ž .11

where

Ž . Ž .a s sM ?q99999, 12n=1

dM
XTŽ . Ž .b s s3 ?M ?q00000q ?q99999q2 ?q ?C ?q99999, 13n=1 ds

dM
YT XXXXXŽ .c s sM ?q-----q ?q00000qq ?C ?qn=1 ds

dC
XT XT Ž .qq ? ?q99999qq ?C ?q00000, 14

ds

dG
Ž . Ž .d s s ?s. 15˙n=1 ds

The matrices dMrds and dGrds and the third-order
tensor dCrds are robot dependent.

As shown in Section 2.3, the torque rate bounds
provide constraints on the admissible states for the
robot. However, the torque bounds derived in refs.
3 and 11 are still required, since, as the torque rate
bounds become very large, the torque bounds be-
come the limiting constraint. For infinite torque
rates, the problem returns to PCTOM.

Following ref. 3, the actuator torque bounds for
the reduced order system are obtained substituting

Ž . Ž . Ž .the path constraints 4 and Eq. 2 into Eq. 5 :

Ž . Ž . 2 Ž . Ž .T FAA s ?sqBB s ?s qCC s FT , 16¨ ˙min max

where

Ž . Ž .AA s sM ?q99999, 17n=1

Ž . XT Ž .BB s sM ?q00000qq ?C ?q99999, 18n=1

Ž . Ž .CC s sG. 19n=1

2.3. Torque Limits

As discussed in ref. 3, for each value of the path
Ž .parameter s, the actuator torque bounds 16 trans-

late into a polygonal feasible region in the s2]s˙ ¨
plane. Such a region is shown schematically in Fig-
ure 1 for a 3-dof manipulator. Analytically, the
actuator torque bounds translate into limits on the
pseudo-velocity and the pseudo-acceleration:

Ž . Ž .sFs s 20˙ ṁax, T

Ž . Ž . Ž .s s, s FsFs s, s . 21¨ ˙ ¨ ¨ ˙min, T max, T

Figure 1. Admissible region in the s2]s plane, after ref. 3.˙ ¨
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The subscript T is used to discriminate the pseudo-
velocity and pseudo-acceleration bounds due to the

Ž .torque constraints 16 from those due to the torque
Ž .rate constraints 11 , which will be denoted with the

subscript J.
Ž .The curve s s as represented in the s]s˙ ˙max, T

Ž .phase plane is called the velocity limit curve VLC
and it represents an upper bound for any feasible
trajectory in this plane. The constraints on the
pseudo-velocity and pseudo-acceleration due to the
actuator torque limits are computed as discussed in
ref. 3.

2.4. Torque Rate Limits

A similar approach can be used to determine the
pseudo-velocity, pseudo-acceleration, and pseudo-
jerk bounds due to the torque rate limits. Thus, for
given values of the path parameter s and pseudo-

Ž .velocity s, the torque rate bounds 11 form a polyg-˙
Žonal feasible region in the sys plane such as the¨ &

one shown schematically in Fig. 2 for a 3-dof manip-
.ulator . Analytically, the torque rate bounds trans-

late into pseudo-acceleration and pseudo-jerk limits
in the sys plane:&¨

Ž . Ž . Ž .s s, s FsFs s, s 22¨ ˙ ¨ ¨ ˙min, J max, J

Ž . Ž . Ž .s s, s, s FsFs s, s, s 23& & &˙ ¨ ˙ ¨min max

and a constraint on the pseudo-velocity in the sys˙ ¨
ys space&

Ž . Ž .sFs s , 24˙ ṁax, J

Ž .where s s is defined as the pseudo-velocityṁax, J
value for which the admissible region in the sys&¨

Figure 2. Admissible region in the s]s plane.&¨

plane reduces to a point

Ž . Ž . Ž .s s, s ss s, s . 25¨ ˙ ¨ ˙min, J max, J max, J max, J

After performing the calculations, the pseudo-jerk
and pseudo-acceleration limits result as

˙ U UT yc yb s̈i i iŽ .s s, s, s s max min ,& ˙ ¨min ½ 5ž /ai Ṫ ii

Ž .is1, . . . , n , 26

˙ U UT yc yb s̈i i iŽ .s s, s, s s min max ,& ˙ ¨max ½ 5ž /ai Ṫ ii

Ž .is1, . . . , n , 27

and

Ž .s s, s¨ ˙min, J

˙ U ˙ Ua T yc ya T ycŽ . ž /j i i i j js max min ,U U½ 5a b ya bž /i , j ˙ ˙T , T j i i ji j

Ž .i , js1, . . . , n , 28

Ž .s s, s¨ ˙max, J

˙ U ˙ Ua T yc ya T ycŽ . ž /j i i i j js min max ,U U½ 5a b ya bž /i , j ˙ ˙T , T j i i ji j

Ž .i , js1, . . . , n , 29

and the pseudo-velocity limit can be computed by a
numerical search.

2.5. Admissible States

In the formulation of the SPCTOM problem pro-
posed herein, the torque rate limits are imposed as a
means for adjusting the smoothness of the trajec-
tory. Hence, they are independent of the actuator
torque limits. This independence is reflected in the
state space, as shown in Figure 3. In this figure, the
actuator torque and torque rate constraints for
the first three joints of the SCORBOT ER VII robot
Ž .Fig. 6, Table I are plotted together in state space
for the three example torque rate limits in Table II.

This independence of the actuator torque and
torque rate limits is reflected in a new constraint on
the pseudo-velocity,

� Ž . Ž .4 Ž .sFmin s s , s s , 30˙ ˙ ˙max, T max, J
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Figure 3. Admissible states in the s]s]s space.˙ ¨

Table I. SCORBOT ER VII estimated kinematic and
dynamic parameters.

w x w x w x w xLink u rad d m a m a rad

p
1 u s0 d s0.3585 a s0.05 a sy1 1 1 1 2
2 u s0 d sy0.037 a s0.30 a s02 2 2 2
3 u s0 d s0.0 a s0.25 a s03 3 3 3

2 2 2w x w x w x w xLink Mass kg I kgm I kgm I kgmx y z

1 m s0.0 I s0.00 I s0.05 I s0.01 x1 y1 z1
2 m s6.6 I s0.10 I s0.60 I s0.62 x 2 y2 z 2
3 m s4.2 I s0.02 I s0.20 I s0.33 x3 y3 z3

and a new constraint on the pseudo-acceleration,

� Ž . Ž .4max s s , s s¨ ¨min, T min, J

� Ž . Ž .4 Ž .FsFmin s s , s s . 31¨ ¨ ¨max, T max, J

Ž .Equation 30 defines a global velocity limit curve,
Ž .called the smooth motion velocity limit curve SMVLC .

In the sys plane, the SMVLC is an upper bound on˙
any feasible trajectory. The SMVLC can be com-
puted at each point along the path by a line search

Žusing bisection the searched domain is limited from
Ž ..zero to s s .ṁax, T

The SMVLC corresponding to the three exam-
ples in Table II are plotted in Figure 4. As shown in
this figure, the SMVLC is determined by a combina-
tion of both actuator torque and torque rate limits.
Depending on the restrictions of the torque rate
limits, they can determine the SMVLC almost en-
tirely, as shown in the third example, or they can

Table II. Imposed actuator torque and torque rate
bounds for the SCORBOT ER VII.

High torque Medium torque Low torque
Torque rate limits rate limits rate limits
limits Example 1 Example 2 Example 3

˙ ˙ ˙w x w x w x w xT Nm T Nmrs T Nmrs T Nmrs1 2 3

˙ ˙ ˙T s10 T s1000 T s100 T s101 11 12 13
˙ ˙ ˙T s10 T s1000 T s100 T s102 21 22 23

˙ ˙ ˙T s10 T s1000 T s100 T s103 31 32 33
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Figure 4. SMVLC for different actuator torque rate lim-
its.

have little influence on it, as shown in the first
example.

2.6. System Dynamics

Ž .TThe states of the reduced system are xs s s s ,˙ ¨
while s is the scalar control u. The SPCTOM plan-&
ning problem is reformulated as

t f Ž .min Js 1 dt , 32H
u 0

subject to the system dynamics

TŽ . w x Ž .xsf x, u s x x u , 33˙ 2 3

the boundary conditions:

TŽ .x s s s s˙ ¨0 0 0 0
Ž .34

T
x s s s s ,˙ ¨Ž .f f f f

Ž . Ž .the state inequality constraints 30 and 31 , and the
Ž .state-dependent control inequality constraints 23 .

This reformulation shows that the SPCTOM
Ž .problem is a time-optimal control TOC problem

for a first-order linear system with nonlinear state
and control inequality constraints and preimposed

Ž .initial and final states. Moreover, Equations 23 ,
Ž . Ž .30 , and 31 emphasize that the state and control
constraints are independently active, since the con-
trols are limited only by the torque rates, while the
states are limited by both the torque rates and the
actuator torques.

3. SOLUTION OF THE SPCTOM

TOC problems similar to the SPCTOM above have
been solved either by applying Pontryiagin’s

Ž .Maximum Principle PMP to derive the necessary
conditions for optimality and then using multiple
shooting methods to solve the resulting two point

Ž .12boundary value problem TPBVP or by a search
for the switching points, using either dynamic pro-
gramming11 or specific algorithms.1] 3

Two difficulties arise in the application of these
approaches in the present case. First, the complexity
of the dynamic programming algorithms grows ex-
ponentially with the phase space dimension, render-
ing the method infeasible for more than two dimen-
sions. As defined, the SPCTOM problem has a
three-dimensional phase space. Second, the other

Žtwo approaches based on PMP and the search for
.the switching points depend on the bang-bang or

bang-singular-bang structure of the optimal con-
trols. This structure has been proven using results

Ž .from optimal control theory OCT regarding sys-
tems with state dependent control constraints.13

However, no results have been proven using OCT
concerning the necessary optimality conditions for
systems with state and control constraints which are
independently active. Thus, for the SPCTOM prob-
lem, it is not guaranteed that the optimal controls
are bang-bang or bang-singular-bang.

To resolve these difficulties, the SPCTOM trajec-
tory planning problem is analyzed and solved herein
in the s]s phase plane. The motivation is that in this˙
plane both trajectory end-points are fixed, while in
the time domain the final point is free. Thus, the
TOC problem lends itself to a nonlinear parameter
optimization in this phase plane. The motion time is
computed as

s dsfŽ . Ž .t s s , 35H ṡs0

where s and s are the initial and the final values0 f
of the path parameter, respectively. Therefore, the
SPCTOM in the s]s phase plane is the smooth˙

Ž .curve that minimizes t s over the curve while not
violating actuator torque andror torque rate limits.

In view of the above, the optimal motion is
determined by an optimization of a base trajectory.
A set of cubic splines with preselected knot-point
locations are chosen as the base trajectory for the
optimization. Cubic polynomials have been selected
to approximate the SPCTOM because they are the
lowest degree polynomials that result in a smooth
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curve, i.e., continuous and differentiable every-
where. The location of the knots along the path have
been chosen to be the same as the location of the

Ž .switching points of the PCTOM Fig. 5 . Since the
PCTOM represents the limit for SPCTOM, these
switching points are, in the limit, the same for
SPCTOM and provide a reasonable estimate for the
location of the SPCTOM switching points along the
parametrized path.

Extra knot-points could be chosen; however, the
number of the PCTOM trajectory switching points
could be high and the addition of extra knots would
significantly increase the number of optimization
variables. Therefore, extra knots will be inserted
only when the corresponding PCTOM trajectory has
one single switching point. In this case the increase
in computational time is negligible while a trajec-
tory parametrization by only two splines could be
inadequate.

This strategy is supported by simulations which
have shown that doubling the number of knots
improves the SPCTOM motion time by around
3]6% for trajectories with five switching points and
by 10]17% for trajectories with only one switching
point. The larger decrease in motion time is for
trajectories with larger jerks.14

The variables of the optimization are the end-
effector pseudo-velocities at the preselected knot-
points along the path and the slopes of the trajec-
tory in the s]s phase plane at the path end-points.˙
These variables control the motion time: the higher

Žthe knot-points over the whole trajectory as located

Ž .Figure 5. Switching points of the PCTOM dotted line
Ž .and a sample splined trajectory solid line .

.in the phase plane , the shorter the motion time. On
the other hand, the end slopes control the speed at
which the actuator torques leave or approach their
static equilibrium values. Therefore, steeper slopes
also result in faster motion.

Thus, the vector of optimization variables, x, is
defined as the parameter set,

T
dsds ˙˙ ž /ž / s s˙ ˙ dsds 1 p f0 Ž .xs ??? , 36

ds ds˙ ˙s s˙ ˙m , 1 m , p� 0ž / ž /ds ds m , fm , 0

where the values with the index m correspond to
Ž .the limiting PCTOM the dotted line in Fig. 5 ,

while the other values correspond to the splined
Ž .trajectory the solid line . These variables are nor-

malized since the end slopes vary over a much
wider range than the pseudo-velocities.

The optimal trajectory results from splining cu-
bic polynomials in the s]s phase plane based on the˙
optimized parameters x*. The trajectory must be
within actuator torque and torque rate limits and
take minimum time. The actuator torque and torque

Ž . Ž .rate constraints in Eqs. 16 and 11 thus become

TiŽ . Ž .g x s1y max , 374Ž iy1.q1 TŽ .s s˙ max i

TiŽ . Ž .g x s1y max , 384Ž iy1.q2 TŽ .s s˙ min i

ṪiŽ . Ž .g x s1y max , 394Ž iy1.q3 ˙Ž .s s T˙ max, i

ṪiŽ . Ž .g x s1y max , 404Ž iy1.q4 ˙Ž .s s T˙ min, i

for is1, . . . , n. By this definition, whenever any of
the actuator torques andror torque rates exceeds its
limits, the respective constraint becomes negative.
Moreover, by enforcing the actuator torque and
torque rate constraints directly, rather than the state
and control constraints, the computations are greatly
simplified.

As formulated, the optimization is solved using
Ž . 15the flexible tolerance method FTM . There are

two reasons for choosing this method. First, the
derivatives of the constraints and the cost function,
i.e., motion time, are not available. Second, the FTM
keeps the search close to the boundary of the admis-
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sible region and can find a minimum that lies ex-
actly on the boundary. The details of the FTM are
discussed in the Appendix and further details on its
implementation for solving the SPCTOM problem
are presented in ref. 14.

4. SIMULATIONS

The method for determining optimal SPCTOM has
been implemented in MATLAB16 and simulations
are performed considering only the positional dof of
the SCORBOT ER VII robot in the Industrial Au-

Ž .tomation Laboratory IAL at the University of
Ž . Ž .British Columbia UBC Fig. 6 . Thus, for the simu-

lations performed here, the robot is an elbow ma-
nipulator with the DH parameters and the esti-
mated masses and inertias given in Table I.

The actuator torque limits are the same for all
the three examples given in this paper, while the
limits on the torque rates are different, as succes-
sively shown in Table II.

4.1. Planning Performance

To determine the influence of the trajectory smooth-
ness on the motion time, a straight line in the robot
work space is chosen as the preimposed path. In
parametric form, the path is given as

Ž .x s s0.4

Ž .y s s0.3sy0.1 Ž .41
Ž .z s s0.2 sq0.3

ss0, . . . , 1.

Figure 6. The SCORBOT ER VII robot.

The resulting optimal trajectories for the differ-
ent limits on the torque rates are shown in Figures
7, 8, and 9, respectively, by solid lines. The dashed
lines represent the time-optimal trajectory consider-

Ž .ing only torque limits PCTOM . The dotted lines
are the smooth motion velocity limit curves
Ž .SMVLC , i.e., the velocity limit curves determined
considering both torque and torque rate limits. The
corresponding actuator torques and torque rates are
also plotted in these figures.

While the PCTOM takes 0.59 s, the SPCTOM
takes 0.7 s in the first example. Here, the limits on

Ž .the torque rates were very high infeasible and the
trajectory is determined by the limits on the actua-
tor torques. In the ideal case, both trajectories should
yield the same motion times; however, there are
two reasons for the increase in motion time for

Ž .SPCTOM: i the limited parametrization chosen in
Ž .the s]s phase plane and ii the significant decrease˙

Ž .in peak torque rates for SPCTOM solid lines com-
Ž .pared to PCTOM dotted lines , as shown in the

semi-log-scale plot in Figure 10.
In examples 2 and 3, the more feasible limits on

the torque rates predominate. Therefore, the torque
constraints are not approached. The optimal motion
times for these examples are higher, 0.735 s and
1.5 s, respectively.

The optimal trajectories determined through the
proposed method are not bang-bang in the controls.
This is a consequence of the parametrization in the
phase plane. However, as seen from the first exam-
ple presented, the chosen parametrization alone
causes a comparatively small increase in the motion
time.

As expected, the more restrictive the limits on
torque rates are, the higher the motion time is. The
planning simulations, however, give no indication
of the relationship between trajectory smoothness
and the tracking performance of the controller. To
establish tracking performance five simulations, fol-
lowed by five experiments were performed.

4.2. Tracking Performance

The two of the SPCTOM trajectories computed
above, with ‘‘feasible’’ medium and low actuator
torque rates, together with the PCTOM trajectory
and an optimized quintic polynomial trajectory,
have been implemented on a simulated model of
the SCORBOT ER VII robot with friction controlled

Ž .by a proportional-integral-derivative PID indepen-
dent joint controller.
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Ž .Figure 7. Example 1 high torque rate limits . Ž .Figure 8. Example 2 medium torque rate limits .



v Journal of Robotic Systems—2000242

Ž .Figure 9. Example 3 low torque rate limits .

Figure 10. Absolute values of the torque rates for the
Ž . ŽSPCTOM in example 1 solid lines and PCTOM dotted

.lines .

Both the robot model and the controller have
been built in the MATLAB Simulink Toolbox.17

Friction has been modeled as Coulomb and viscous
friction, with the Coulomb friction coefficients
2.0 Nm and the viscous friction coefficients 0.2 Nms
for all three links. The controller has been tuned for
critical damping and a rise time of 200 ms for a
sampling frequency of 200 Hz. In the simulations,
the actuator torques saturate at 10 Nm, which is the
torque limit considered during planning.

The tracking performance of the PID controller
for all four trajectories is plotted in Figure 11, while
the planned and simulated actuator torques are
plotted in Figs. 12]15. The results are summarized
in Table III.

As seen in Figure 11, due to actuator torque
saturation, the controller cannot keep the end-effec-
tor on the path when the torque rates are too high.
This is the case with the PCTOM trajectory and the
SPCTOM trajectory corresponding to torque rate

Ž .limits of 100 Nmrs labeled ‘spctom2’ in Fig. 11 .
This result shows that torque rate limits are ex-
tremely important for the ability of the system to
track a planned trajectory, especially given inaccu-
rately identified or modelled system dynamics. As
expected, the smoother the trajectory, i.e., the lower
the torque rate limits, the higher the tracking accu-
racy of the controller. for the PCTOM trajectory, the
simulation predicts actuator saturation, which re-
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Figure 11. Simulated controller tracking performance for
the PCTOM, quintic, and SPCTOM trajectories.

sults not only in decreased tracking performance,
Ž .but also in longer motion time Table III .

The simulations show similar tracking perfor-
mance for the SPCTOM trajectory with low torque
rates and the quintic trajectory generated based on
torque and velocity limits.1 However, the SPCTOM
trajectory takes 1.5 s, compared to 2 s for the quintic
trajectory.

1Quintic trajectories are completely specified by torque and ve-
locity limits. The reported trajectory torque rate for the quintic
trajectory depends on these limits.

Figure 12. Desired and simulated torques for the PC-
TOM trajectory.

Figure 13. Desired and simulated torques for the
ŽSPCTOM trajectory example 2—torque rate limits of

.100 Nmrs .

5. EXPERIMENTS

All the above trajectories have also been imple-
mented on the SCORBOT ER VII in the IAL at UBC.
The robot is controlled by a TMS320C32 digital
signal processing board, interfaced with two axis
control cards, each capable of handling three axes
simultaneously. An Open Architecture Real-Time

Ž .18operating system ORTS is used in the implemen-
tation of the control algorithm and in reading the
pre-planned trajectories and feeding them to the
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Figure 14. Desired and simulated torques for the
ŽSPCTOM trajectory example 3—torque rate limits of

.10 Nmrs .

control loop at the controller frequency. The axis
control cards and the ORTS were developed by the

Ž .Manufacturing Automation Laboratory MAL ,
UBC. For the purpose of the experiments reported
here, only the positional degrees of freedom of the
robot are considered, thus the robot is treated as a
3-dof elbow manipulator with the kinematic and
dynamic parameters given in Table I. A tuned,
discrete PID algorithm is used to provide the con-
trol law. This setup simulates typical conditions in
industry, where the robot is equipped with a closed
architecture discrete PID independent joint con-
troller.

The results of the experiments are plotted in
Figures 16]19, and summarized in Table IV.

These experimental results support the simula-
tion results. Namely, for high torque rate limits, the
controller cannot keep the end-effector on the path.
Figures 16, and 17 show that trajectories with high

Figure 15. Desired and simulated torques for the quintic
trajectory.

torque rates result in increased tracking errors,
which, in turn, activate the controller, saturating the
actuators. Whenever this happens, the end-effector
leaves the path. Such a trajectory is an infeasible
trajectory. For the case of the SCORBOT ER VII
manipulator, torque rate limits less than one order
of magnitude higher than the actuator torque limits
are required to ensure that the end-effector follows
the planned path. While this result is more restric-
tive for the torque rate limits than predicted by the
simulations, it is not totally unexpected. Due to the
large errors involved in modelling the system, one
would expect that the simulation results would
overestimate the system capabilities.

The experimental performance of the SPCTOM
trajectory corresponding to the low torque rate lim-
its, i.e., 10 Nmrs, is similar to its simulated perfor-
mance. Thus, while being tracked by the controller
with similar accuracy and effort as the quintic tra-

Table III. Simulated results for the PCTOM, SPCTOM, and quintic trajectories.

RMSMaximum
tracking errorTorque rate Motion tracking

limits time error joint 1 Joint 2 joint 3
w x w x w x w x w x w xTrajectory Nmrs s cm 8 8 8

PCTOM ` 0.90 1.98 1.54 0.31 0.37
SPCTOM 2 100 0.74 1.40 1.12 0.26 0.33
SPCTOM 3 10 1.50 0.64 0.53 0.12 0.16
Quintic 7 2.00 0.51 0.42 0.10 0.12
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Figure 16. Experimental results for the PCTOM trajec-
tory implemented on the SCORBOT ER VII.

Figure 17. Experimental results for the SPCTOM trajec-
Ž .tory example 2—torque rate limits of 100 Nmrs imple-

mented on the SCORBOT ER VII.
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Figure 18. Experimental results for the SPCTOM trajec-
Ž .tory example 3—torque rate limits of 10 Nmrs imple-

mented on the SCORBOT ER VII.

Figure 19. Experimental results for the quintic trajectory
implemented on the SCORBOT ER VII.
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Table IV. Experimental results for the PCTOM, SPCTOM, and quintic trajectories under independent
joint PID control.

RMSMaximum
tracking errorTorque rate Motion tracking

limits time error joint 1 joint 2 joint 3
w x w x w x w x w x w xTrajectory Nmrs s cm 8 8 8

PCTOM ` 4.0 14.0 17.5 3.1 15.8
SPCTOM 2 100 4.0 12.5 15.9 2.6 14.8
SPCTOM 3 10 1.5 3.1 2.6 1.9 1.5
Quintic 7 2.0 2.5 2.3 1.8 1.4

Žjectory, it results in reduced motion time 1.5 s
.compared to 2 s . This indicates that torque rate

limits are preferable when determining smooth time
optimal motions over global velocity and accelera-
tion limits.

Experiments were also carried out using pro-
Ž .portional-derivative PD plus gravity compensa-

tion control. The results are summarized in Table V
and show the same correlation between the tracking
accuracy and the torque rates along the trajectory.

6. CONCLUSIONS

A method has been presented for determining
smooth and time-optimal path-constrained trajecto-
ries for robotic manipulators. The dynamics of the
manipulator together with limits on the actuator
torques and torque rates are considered. A base
trajectory is constructed in the s]s phase plane˙
using parametrized cubic splines and a set of initial,

final, and knot-point conditions derived from PC-
TOM without torque rate limits. Thus, the optimal
motion is obtained through an optimization of this
base trajectory, subject to actuator torque and torque
rate limits.

In planning simulations, the trajectory smooth-
ness has a negative impact on the motion time,
lower torque rate limits resulting in higher motion
time. However, both controller simulations and ex-
periments have shown that, in practice, trajectory
smoothness has a positive effect on both the track-
ing performance of the controller and the actual
motion time. Moreover, a smoothly planned tra-
jectory can compensate for a poorly modeled
robot system, which is often the case in industrial
practice.

Compared to a quintic polynomial trajectory
with velocity and acceleration limits, the SPCTOM
trajectory results in a faster motion for similar track-
ing performance. Thus, torque rate limits are prefer-
able when imposing a desired degree of trajectory

Table V. Experimental results for the PCTOM, SPCTOM, and quintic trajectories under PD plus
gravity compensation control.

RMSMaximum
tracking errorTorque rate Motion tracking

limits time error joint 1 joint 2 joint 3
w x w x w x w x w x w xTrajectory Nmrs s cm 8 8 8

PCTOM ` 6.0 30.6 17.5 3.7 15.5
SPCTOM 2 100 6.0 26.3 6.9 3.3 15.1
SPCTOM 3 10 1.5 5.6 2.5 3.2 1.3
Quintic 7 2.0 4.3 2.1 2.5 1.2
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smoothness over quintic polynomials, since they are
not posture-dependent.

APPENDIX A

Ž . 15In the flexible tolerance method FTM , the opti-
mization problem,

Ž . n Ž .Minimize: f x xgR A1
Subject to

Ž . Ž .constraints: h x s0 is1, . . . , m A2i

Ž .g x G0 ismq1, . . . , p,i

is solved as the following simpler equivalent prob-
lem with only one constraint:

Ž . nmin: f x xgR
Ž .A3

Žk . Ž .subject to: F yTT x G0.

FŽk . is the value of the flexible tolerance criterion at
the k th step of the optimization and it also serves as
a criterion for the termination of the search, and TT

is a positive functional of all the equality andror
inequality constraints of the original problem. The

Ž .cost function f x and the equality and inequality
Ž .constraints in A3 may be linear andror nonlinear

functions of the variables in x. The value of the cost
function is improved by using information provided
by feasible points, as well as certain nonfeasible
points called near-feasible points. The near-feasibility
limits are made more restrictive as the search ad-
vances, until in the limit only feasible points are
accepted.

Ž . Ž .In A4 below, TT x is used as a measure of the
constraint violation, while F is selected as a posi-
tive decreasing function of the x points in Rn. For
the SPCTOM,

Ž . Ž .max g x if ' such that g x G1i i i iŽ .TT x s ½ 0 otherwise,
Ž .A4

and

rq1
Žk . Žky1. Žk . Žk .5 5 Ž .F smin F ; k x qx A5Ý i centr½ 5

is1

with k a constant.
The tolerance criterion is used to classify points

in Rn. At the k th step of the optimization, a point

x Žk . is said to be:

Ž .1. Feasible, if TT x s0.
Ž . Žk .2. Near-feasible, if 0FTT x FF .

Ž . Žk .3. Nonfeasible, if TT x )F .

Ž Žk .. Žk .A small value of TT x implies that x is rela-
tively near to the feasible region, and a large value

Ž Žk .. Žk .of TT x implies that x is relatively far from the
feasible region.

On a transition from x Žk . to x Žkq1., the move is
Ž Žkq1.. Žk .said to be feasible if 0FTT x FF , and non-

Žk . Ž Žkq1..feasible if F FTT x .
The FTM entails two independent optimiza-

tions: an outer minimization of the cost function
Ž .f x and an inner minimization of the violation of

Ž . Ž .constraints TT x whenever the minimization of f x
yields an infeasible point. The outer optimization of
the motion time is implemented in this paper using

Ž . 19the flexible polyhedron method FPM . The FPM
is a search in n dimensions where the polyhedron
changes shape to match the changing shape of the
surface. In the vicinity of a minimum the polyhe-
dron shrinks, surrounding the minimum. Replace-
ment of an infeasible point with a feasible or near-
feasible one is done through a line search using
interval halving.

The computational requirements of the algo-
rithm are similar to those of a nonlinear optimiza-
tion. In this case, the main overhead is represented
by the evaluation of the constraint violation mea-

Ž .sure in Eq. A4 . This overhead is reduced by evalu-
ating the actuator torque and torque rate limits
violation directly rather than the state and control
constraint violation.
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