
 52

IV. UG Open Architecture

IV.1. UG Open Essentials
“Open architecture” is software design that allows access to program functionality

without requiring access to the source code. We have already done this in a way, with
the libraries that we have used (e.g., iostream). We have used classes and functions from
libraries without actually seeing or compiling the source code. All we needed was the
class and function declarations from header files. Open architectures are similar to this,
but with one difference: the open architecture program must call your functions.
Therefore, to write an extension to an open architecture program, your classes and
functions must follow the patterns that have been established in the open architecture.

If you are not familiar with using Unigraphics NX it will be helpful to go through
a quick introductory tutorial before continuing. The tutorial is available on line: Start
Unigraphics NX, and from the menu select “Help” “Training…” This will start a web
browser with the tutorials. Complete the online tutorial Design An Overview of
Unigraphics. (Tutorial parts are available in the /usr/arch/apps/ugs190/ugcast/parts
directory.)

Instructions for using the Unigraphics open architecture are also provided on-line:
After starting UG NX select “Help” “Documentation…” This will start a web
browser with the user manuals. Under the “Open” heading are manuals that you will find
useful in this course: “API Programmer’s Guide,” “API Reference Guide,” “Open C++
Programmer’s Guide,” “Menuscript User’s Guide” and “User Interface Styler.” The two
“API” guides are for C program access using the “UG/Open API.” API stands for
“Application Programmer’s Interface.” This is a common acronym referring to open
architecture classes and functions – another acronym that is often used is SDK: “Software
Development Kit.” The C++ guide is for C++ access using “NX Open C++.” Note that
not all functionality is available through NX Open C++ and therefore UG/Open API will
also be used. The latter two guides (menuscript and UI styler guides) will be helpful if
you choose to use the UG windowing functionality rather than the Windows toolkits we
have previously discussed. “GRIP” provides a facility for writing interpreted programs
in a UG programming language. GRIP will not be covered in this course.

UG open architecture programs can be written as “External” or “Internal”
programs. External programs run independently from the UG executable. That is, it is
not necessary to start UG to run External programs. External programs use UG code
simply for the numerous libraries. Since UG is not running, no graphical interaction is
possible unless it is specially programmed in. On the other hand, Internal programs are
compiled as dynamically linked libraries and must have a function that matches the
prototype:

void ufusr(char *param, int *retcod, int parm_len);

This function is started from UG by selecting “File” “Execute UG/Open” “User
Function” and selecting the dynamic link library in the dialog box. It is also possible to
modify the UG installation to allow executing this function through menu selections or
toolbar buttons. This course will only address Internal programs.

 53

The best way to start creating an open architecture program is to study and adapt
an existing program that is similar to the one you are creating that you have already
compiled and shown to work. This will not only illustrate you how the program should
be written, but will allow you to use a Makefile that already has the correct compile
settings and libraries. In the ME-EM department, many sample programs are available in
the directory /usr/arch/apps/ugs190/ugopen, mixed in with all of the UG/Open API
header files.

IV.2. Typical Application
The general form of an Internal program using UG/Open API is:

 #include <uf.h> // uf.h has declaration for ufusr()

 // Additional include files as required

 void ufusr(char *param, int *retcod, int parm_len)
 {

 // variable declarations

 UF_initialize();

 // body

 UF_terminate();
 }

The arguments in ufusr() are usually not used. param gives parameters that are passed
into the program from UG. parm_len is the number of characters in param. retcod is
a pointer to a variable that holds the return code which may be passed back to UG.
UF_initialize() and UF_terminate() are called before and after the body of the
function, to allocate and deallocate a UG/Open API license respectively.

An actual program will also provide error checking, so ufusr() may be written
as:

 void ufusr(char *param, int *retcod, int parm_len)
 {

 if (!UF_CALL(UF_initialize())
 {

 // body

 UF_CALL(UF_terminate());
 }
 }

UF_CALL is a macro that automatically flags errors, including printing the filename and
line number of the error.

 54

In NX Open C++, the initialization and termination is accomplished automatically
through the constructor and destructor of the UgSession class:

 #include <uf.h>
 #include <ug_session.hxx>

 // Additional include files as required

 void ufusr(char *, int *, int)
 {

 // variable declarations

 UgSession my_session (true);

 // body

 }

To use the UgSession class it is necessary to include the header file ug_session.hxx. The
Boolean argument that is passed to the constructor of the UgSession object tells whether
or not UF_terminate() should be called automatically in the destructor.

To add error handling the C++ way, the following code is used:

 #include <uf.h>
 #include <ug_session.hxx>
 #include <ug_exception.hxx>

 // Additional include files as required

 void ufusr(char *, int *, int)
 {

 // variable declarations

 try
 {
 UgSession my_session (true);

 // body
 }
 catch (UgException oops)
 {
 // error message to user
 }

 }

The try/catch expression is for “exception handling.” Instead of returning true or false
from a function to indicate an error, as is normally done in C, exception handling requires
the “throw” command to be used to create an exception object. In this example an

 55

exception can be thrown in the UgSession constructor or in the body of the function,
resulting in the creation of a UgException object “oops.” This object contains
information about the error, which can be displayed to the user in an information
window:

 #include <uf.h>
 #include <ug_session.hxx>
 #include <ug_exception.hxx>
 #include <ug_info_window.hxx>

 // Additional include files as required

 void ufusr(char *, int *, int)
 {

 // variable declarations

 try
 {
 UgSession my_session (true);

 // body
 }
 catch (UgException oops)
 {
 UgInfoWindow info;
 info.open();
 info.write(oops.askErrorText());
 info.write("\n");
 return;
 }

 }

The body of the function can evaluate information stored in the user’s model, can
modify the information, can delete information, or create new information. The body of
the function can also change how the information is displayed (e.g., changing the viewing
direction). These tasks are accomplished by accessing API functions or functions in UG
classes.

There are four classes of objects available:

- Application classes such as UgSession, UgInfoWindow, and UgException, are used
to control the general operation of the application.

- Object classes such as UgPart, UgArc, UgFace, and UgExpression, are used to access
and control the information.

- Helper classes such as ThruPoint and Evaluator are used in other objects.

- Math classes such as for points, vectors, matrices, and coordinate systems, allow
easily representing the mathematical calculations.

Each class is generally declared in its own header file named the same as the class.

