
Introduction to Design

Optimization:

Search Methods

1-D Optimization

•  The Search
–  We don’t know the curve. Given α, we can calculate f(α).
–  By inspecting some points, we try to find the approximated

shape of the curve, and to find the minimum, α*
numerically, using as few function evaluation as possible.

•  The procedure can be divided into two parts:
a) Finding the “range” or region “ known ” to contain α* .
b) Calculating the value of α* as accurately as designed or as

possible within the range – narrowing down the range.

N-Dimensional Search

•  The Problem now has N Design Variables.
•  Solving the Multiple Design Variable Optimization

(Minimization) Problem Using the 1-D Search Methods
•  This is carried out by:

–  To choose a direction of search
o To deal with one variable each time, in sequential order -

easy, but take a long time (e.g. x1, x2, …, xN)
o To introduce a new variable/direction that changes all

variables simultaneously, more complex, but quicker (e.g. S)
–  Then to decide how far to go in the search direction (small

step ε = Δx, or large step determining α by 1D search)

Search Methods
•  Typical approaches include:

–  Quadratic Interpolation (Interpolation Based)
–  Cubic Interpolation
–  Newton-Raphson Scheme (Derivative Based)
–  Fibonacei Search (Pattern Search Based)
–  Guided Random
–  Random

•  Iterative Optimization Process:
–  Start point αo → OPTIMIZATION → Estimated point αk
→ New start point αk+1

–  Repeat this process until the stopping rules are satisfied,
then α* =αn .

N-D Search Methods

Calculus Based Guided Random Random Enumerative

Cubic,
Gradient Based,
Newton-Raphson

.

.

.

.

.

.

.

.

Genetic Algorithm
Simulated Annealing

Monte Carlo

N-D Search Methods
•  Calculus Based

–  Indirect method: knowing the objective function set the gradient
to Zero. If we need to treat the function as a “black box” we
cannot do this. We only know F(X) at the point we evaluate the
function.

–  Direct Methods:
•  Steepest Descent method
•  Different flavors of Newton methods

•  Guided random search-combinatory techniques
–  Genetic method
–  Simulated annealing

•  Random: Monte Carlo
•  Enumerative method: scan the whole domain. This is simple but

time consuming

Steepest Descent or Gradient Descent
•  The gradient of a scalar field is a vector field which points in the direction of

the greatest rate of increase of the scalar field, and whose magnitude is the
greatest rate of change. This means that if we move in its negative direction
we should go downhill and find a minimum. This is the same path a river
would follow. Given a point in the domain the next point is chosen as it
follows:

X0

X1

X2

X3

isoline

Gradient always normal to isoline

isoline

isoline isoline

Steepest descent and ill-conditioned, badly
scaled functions

•  Gradient descent has problems with ill-conditioned functions such as the
Rosenbrock function shown here. The function has a narrow curved valley
which contains the minimum. The bottom of the valley is very flat. Because
of the curved flat valley the optimization is zig-zagging slowly with small
stepsizes towards the minimum.

Newton-Raphson Method
•  The Newton-Raphson method is defined by the recurring

relation:

An illustration of one iteration of Newton's method
(the function ƒ is shown in blue and the tangent line
is in red). We see that xn+1 is a better approximation
than xn for the root x of the function f.

Secant Method
•  The Secant method is defined by the recurrence

relation:

The first two iterations of the secant method. The
red curve shows the function f and the blue lines
are the secants.

Quadratic Interpolation
Method

2(()) H a b cf α αα α= + +⇐

•  Quadratic Interpolation uses a quadratic function, H(α), to
approximate the “unknown” objective function, f(α).

•  Parameters of the quadratic function are determined by several
points of the objective function, f(α).

•  The known optimum of the interpolation quadratic function is
used to provide an estimated optimum of the objective function
through an iterative process.

•  The estimated optimum approaches the true optimum.
•  The method requires proper range being found before started.
•  It is relatively efficient, but sensitive to the shape of the objective

H(α)

f(α)

Combinatory Search: Genetic Algorithm

•  Valid for discrete variables
•  One of the best “all purposes” search method.
•  Emulates the genetic evolution due to the “survival of the fittest”
•  Each variable value >a GENE, a binary string value in the variable range
•  Vector variables X> a CHROMOSOME, a concatenation of a random

combinations of Genes (strings) one per type (one value per variable). A
Chromosome (Xi) is a point in the X domain and is also defined as
genotype.

•  Objective Function F(X)>phenotype. F(Xi) is a point in the Objective
Function domain corresponding to Xi .

Genetic Algorithm

•  Construction of a chromosome Xi(xi,yi,zi)

x1 y1 z1

X1

Genetic Algorithm
1) Construct a population of genotypes (chromosomes) and evaluate the phenotypes

(objective function).

2) Associate a fitness value between 0 and 1 to each phenotype with a fitness function.
This function normalizes the phenotype (objective function) and assigns to its
genotype an estimate (between 0 and 1) of its ability to survive.

3) Reproduction. The ability of a genotype to reproduce is a probabilistic law biased by
the value given by the fitness function. Reproduction is done as it follows:

 Given 2 candidate for reproduction, we have:
 a) Cloning. The offspring is the same as the parents
 b) Crossover. Chromosomes are split in two (head and tail) at a random point

 between genes and rejoined swapping the tails. When crossover is performed
 Mutation takes place. Each Gene is slightly changed to explore more possible
 outcomes.

4) Convergence. The algorithm stops when all genes in all individuals are at 95%

percentile

Genetic Algorithm. Example

Genetic Algorithm. Example

Genetic Algorithm. Example Results
Outcome:

Simulated Annealing (wikipedia)

•  The name and inspiration come from annealing in metallurgy, a
technique involving heating and controlled cooling of a material to
increase the size of its crystals and reduce their defects. The heat
causes the atoms to become unstuck from their initial positions (a
local minimum of the internal energy) and wander randomly through
states of higher energy; the slow cooling gives them more chances
of finding configurations with lower internal energy than the initial
one.

•  In the simulated annealing (SA) method, each point s of the search
space is analogous to a state of some physical system, and the
function E(s) to be minimized is analogous to the internal energy of
the system in that state. The goal is to bring the system, from an
arbitrary initial state, to a state with the minimum possible energy.

•  By analogy with this physical process, each step of the SA algorithm
attempts to replace the current solution by a random solution
(chosen according to a candidate distribution, often constructed to
sample from solutions near the current solution). The new solution
may then be accepted with a probability that depends both on the
difference between the corresponding function values and also on a
global parameter T (called the temperature), that is gradually
decreased during the process. The dependency is such that the
choice between the previous and current solution is almost random
when T is large, but increasingly selects the better or "downhill"
solution (for a minimization problem) as T goes to zero. The
allowance for "uphill" moves potentially saves the method from
becoming stuck at local optima.

Monte Carlo Method
•  Monte Carlo methods vary, but tend to follow a particular pattern:

•  Define a domain of possible inputs.
•  Generate inputs randomly from a probability distribution over the

domain.
•  Perform a deterministic computation on the inputs.
•  Aggregate the results.

•  Draw a square on the ground, then inscribe a circle within it.
•  Uniformly scatter some objects of uniform size (grains of rice or

sand) over the square.
•  Count the number of objects inside the circle and the total number of

objects.
•  The ratio of the two counts is an estimate of the ratio of the two

areas, which is π/4. Multiply the result by 4 to estimate π.
•  In this procedure the domain of inputs is the square that

circumscribes our circle. We generate random inputs by scattering
grains over the square then perform a computation on each input
(test whether it falls within the circle). Finally, we aggregate the
results to obtain our final result, the approximation of π.

For example, consider a circle inscribed in a unit square. Given
that the circle and the square have a ratio of areas that is π/4, the
value of π can be approximated using a Monte Carlo method:

•  To get an accurate approximation for π this procedure
should have two other common properties of Monte
Carlo methods. First, the inputs should truly be random.
If grains are purposefully dropped into only the center of
the circle, they will not be uniformly distributed, and so
our approximation will be poor. Second, there should be
a large number of inputs. The approximation will
generally be poor if only a few grains are randomly
dropped into the whole square. On average, the
approximation improves as more grains are dropped.

