Drawings for Manufacture

Rodney Katz

Where to Start when Creating Engineering Drawings

Ask yourself.....

- How is the part going to be made?
- Have standardized sizes and parts been used where applicable?
- What are the important/critical dimensions of the part?
- How accurate does the part need to be (Tolerances)?
- What material does the part need to be made of to satisfy the design requirements (Environment, strength, cost)?
- Is the part optimized for the manufacturing methods to be employed?

What to Think About when Creating a Set of Engineering Drawings

- Engineering Drawings are a set of instructions to be adhered to by the manufacturer
- The instructions must be as clear and concise as possible
- Consider the machines, tools, materials and skill capabilities of the manufacturing process
- Relationships of dimensions to one another
- Views necessary to adequately convey features of part (Third angle projection, section views and detailed views)
- Surface finishes (O-ring sealing surfaces, cosmetic finishes etc)
- Always consider the cost of manufacturing your part

Example 1 Specification Drawing

Important Specifications:

- •Origin location
- •Dimension tolerances
- •Entity relationships
- •Geometric callouts

Material

Example 1 Shop Drawing

Important Specifications:

- •Origin location
- •Dimension tolerances
- •Entity relationships
- •Geometric callouts

Material

Example 2

Important Specifications:

- •Origin location
- •Dimension tolerances
- •Material designation
- •Geometric callouts

DIMENSIONS ARE IN INCHES TOLERANCES: TWO PLACE DECIMAL +/- .01" THREE PLACE DECIMAL +/- .003" UNLESS OTHERWISE SPECIFIED

Example 3

Example 4

Tolerancing

Things to consider...

• What needs to be have tolerances and what doesn't (Nominal Sizes)

-Nominal Size (Nom.) is the supplied material size without machining

• Precision Required (number of decimal places).

-Excessive tolerancing can be extremely time consuming resulting in high manufacturing costs

 Avoid tolerance accumulation/stacking

	Tolerances Related To Machining Processes and Sizes												
Range of Sizes													
	To and												
From	including	Tolerances											
0.010	0.599	0.00015	0.0002	0.0003	0.0005	0.0008	0.0012	0.002	0.003	0.005			
0.600	0.999	0.00015	0.00025	0.0004	0.0006	0.001	0.0015	0.0025	0.004	0.006			
1.000	1.499	0.0002	0.0003	0.0005	0.0008	0.0012	0.002	0.003	0.005	0.008			
1.500	2.799	0.00025	0.0004	0.0006	0.001	0.0015	0.0025	0.004	0.006	0.010			
2.800	4.499	0.0003	0.0005	0.0008	0.0012	0.002	0.003	0.005	0.008	0.012			
4.500	7.799	0.0004	0.0006	0.001	0.0015	0.0025	0.004	0.006	0.010	0.015			
7.800	13.599	0.0005	0.0008	0.0012	0.002	0.003	0.005	0.008	0.012	0.020			
13.600	20.999	0.0006	0.001	0.0015	0.0025	0.004	0.006	0.010	0.015	0.025			
5				5 D	2								

Tolerances Related To Machining Processes and Sizes

Common Hole Mistakes to Avoid

No Flat bottom drilled holes

Tapped holes excessively deep

Tips and Tricks

- Incorporate devices which will allow room for inconsistencies in manufacturing and materials
- When possible draw parts to a 1:1 scale and print to get a real sense of size
- Consult the manufacturer before producing detailed drawings
- Provide the manufacturer an assembly drawing in order to help them understand the integration of the part
- Consider the cutting tools required to machine the part in order to determine if the feature is viable (Milled feature width to depth ratio)

Drafting Tips

- Text should be large enough to be read easily
- Ensure appropriate scale and location for pointer lines (arrows)
- Lines should be dark and legible
- Avoid using pale colours in drawings
- Give parts unique names and part numbers
- Maintain a revision system for updated packages
- Relax tolerances as much as possible
- Avoid the use of built-in cad software for calling out tap drill sizes (consult tap drill sizes chart or the manufacturer)

Common Tap and Clearance Drill Sizes											
Тар	Tap Drill		Clearance Drill								
	Drill # Dec Equ		Tight/Precis	sion Clearance	Medium Clearance		Loose Clearance				
Nom Size - 1.P.i.			Drill #	Dec Equ	Drill #	Dec Equ	Drill #	Dec Equ			
2 - 56	49	0.073	44	0.086	43	0.089	42	0.093			
4 - 40	42	0.093	35	0.110	33	0.113	32	0.116			
6 - 32	35	0.110	29	0.136	28	0.140	27	0.144			
8 - 32	28	0.140	20	0.161	18	0.169	17	0.173			
10 - 24	23	0.154	12	0.189	10	0.193	7	0.201			
10 - 32	20	0.161	12	0.189	10	0.193	7	0.201			
1/4 - 20	6	0.204	1/4	0.250	6.5(mm)	0.255	17/64	0.266			
1/4 - 28	7/32	0.218	1/4	0.250	6.5(mm)	0.255	17/64	0.266			
5/16 - 18	17/64	0.265	5/16	0.312	8(mm)	0.315	21/64	0.328			
3/8 - 16	21/64	0.320	3/8	0.375	25/64	0.390	13/32	0.406			
3/8 - 24	R	0.339	3/8	0.375	25/64	0.390	13/32	0.406			
7/16 -14	3/8	0.375	7/16	0.438	29/64	0.453	15/32	0.469			
7/16 - 20	25/64	0.390	7/16	0.438	29/64	0.453	15/32	0.469			
1/2 - 13	7/16	0.437	1/2	0.500	13(mm)	0.512	9/16	0.563			
1/2 - 20	29/64	0.453	1/2	0.500	13(mm)	0.512	9/16	0.563			

Note: For tap drill and clearance drill sizes outlined in the table above are sufficient for most work conducted in the Uvic Mech Eng Machining Facility. For critical for high stress applications consult shop supervisor before selecting a tap or clearance drill.

