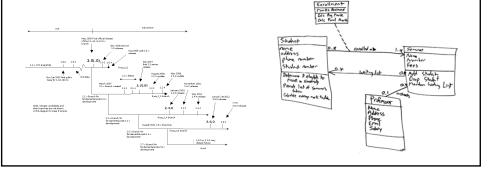
SENG 371 Software Evolution

Lab #1

Lab Instructors

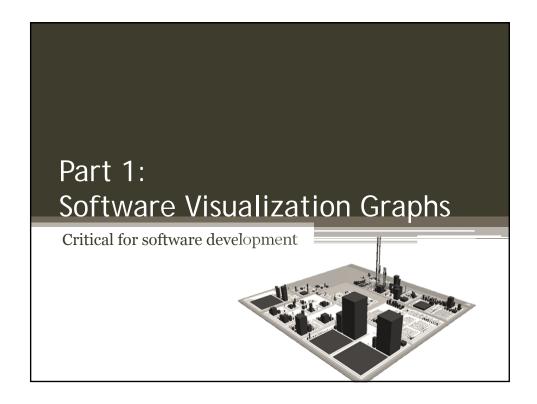
Pratik Jain


Przemek Lach

Lorena Castañeda

Lab Themes Outline

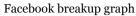
- 1. Software Visualization Tools
- 2. Source Management Tools
- 3. Corporative Solutions



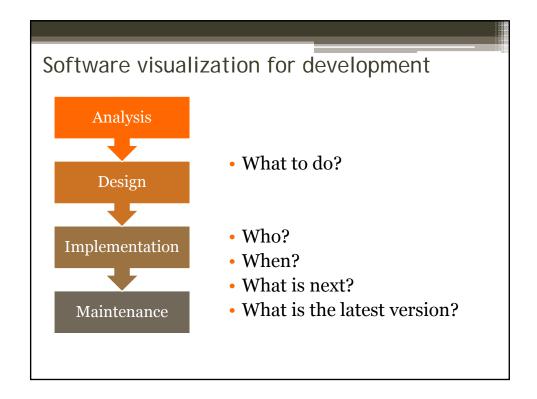
Lab Themes Outline

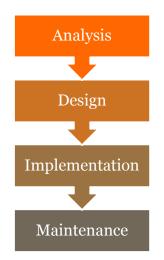
- 1. Software Visualization Tools
 - A. Software Visualization Graphs
 - B. UML Visualization tools
 - C. Source Management Visualization tools
- 2. Source Management Tools
- 3. Corporative Solutions

Lab Themes Outline


- 1. Software Visualization Tools
 - A. Software Visualization Graphs
 - **B.** UML Visualization tools
 - C. Source Management Visualization tools
- 2. Source Management Tools
- 3. Corporative Solutions

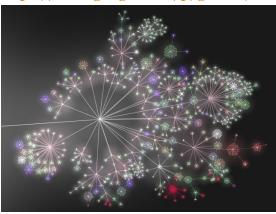
Why software visualization?


- To understand data
- To make data human readable
- To share information and make better desicions
- To make predictions
- To manage source code
- ... and many more



The Linux Kernel Project

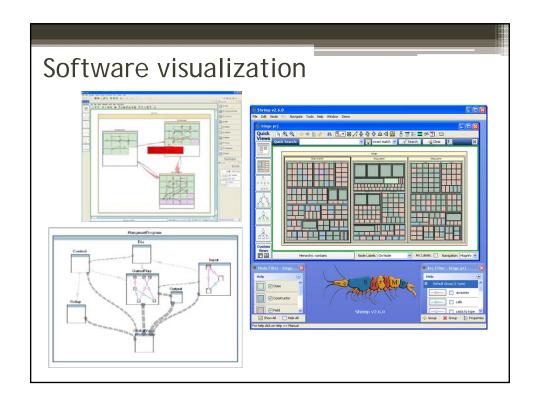
Software visualization tools for developers

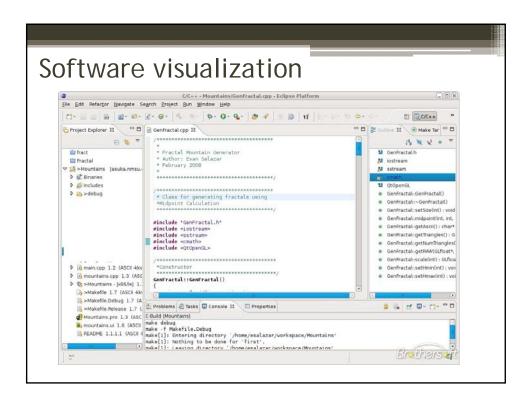


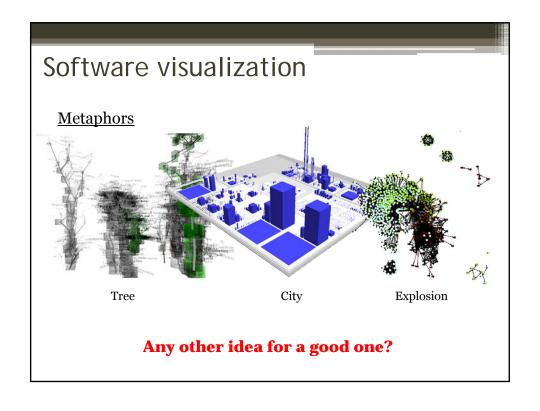
- UML Visualization tools
 - **1. IDE plugins** (e.g. Eclipse, JDeveloper, Visual Studio)
 - **2. Online tools** (e.g. yUML,)
 - **3. Desktop** (e.g. StarUML, ArgoUML, Dia)
- Source management visualization tools
 - e.g. Gource, CodeSwarm, SVN
 Time-Lapse View

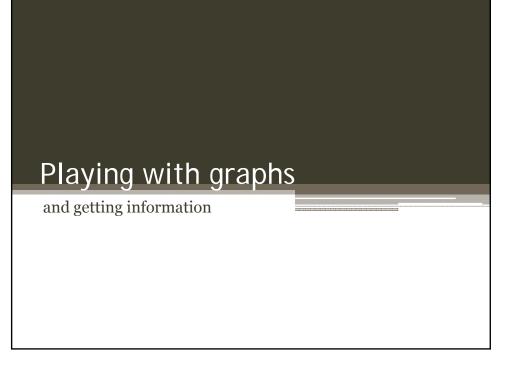
Software Visualization for source management

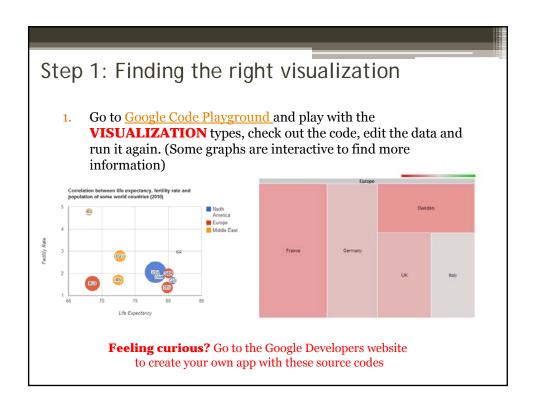
Tracking the evolution of a software project


https://code.google.com/p/gource/




The Linux Kernel Project


Software Visualization Tools

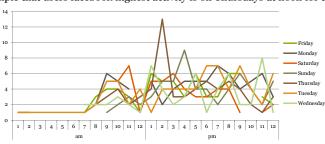

- UVic
 - Rigi VisualizationTool http://rigi.uvic.ca/
 - SHriMP views
 http://sourceforge.net/projects/chiselgroup/
- U. Lugano
 - CodeCity http://www.inf.usi.ch/phd/wettel/codecity.html
- U. Gronigen
 - Scientific Visualization and Computer Graphics (SVCG) http://www.cs.rug.nl/svcg/

Step 2: Getting data sources

IMPORTANT: When creating a visualization you need to know the <u>format</u> of the data set

You can get free data from some places (just to play):

- Infochimps http://www.infochimps.com/
- Freebase http://www.freebase.com/
- IBM Many eyes http://www-958.ibm.com/software/analytics/manyeyes/
- Weka http://www.cs.waikato.ac.nz/ml/weka/datasets.html
- ... Your own facebook profile


Step 3: Getting information from data

 Open any visualization tool and load the data (e.g MS Excel, Weka, Google Drive)

Or, http://webhome.csc.uvic.ca/~lcastane/

Go to MS Excel, open de **account_activity_excelDemo.xlsx** file and play with dynamic tables and charts to find information

... for example that users facebook highest activity is on Thursdays at noon for the past months. $_{^{14}}$

Step 3: Getting information from data

Some questions for yourself:

- What useful information did I get?
- 2. Did I find what I was looking for?
- 3. Did I find more than what I was looking for?
- 4. Is there any data I need to get more information?
- 5. If I change the type of graph do I get new information? Did the type of graph matter?

Discussion

- 1. How software visualization is a tool for engineering?
- 2. Is it really THAT important? Why?
- 3. How software visualization impacts other areas and users?,
 - Pick a different one from CS (e.g Arts, Politics, Health, Traffic, Police) and give an application example that you would like to see.

Lab Themes Outline (next week)

1. Softwarwe Visualization Tools

- A. Software Visualization Graphs
- **B.** UML Visualization tools
- C. Source Management Visualization tools
- 2. Source Management Tools
- **3.** Corporative Solutions