
Build Systems
Przemek (Pshemek) Lach

SEng 371

Source

● Slides are based
on content from
book.

● Examples and
diagrams also used
from book.

● Software build
systems; principles
and experience.
(2011). Reference
and Research Book
News, 26(3)

Motivation

Why Build?

● Anytime you want to do more than compile
half a dozen files.

● Simplifies software development and testing.
● You want to make a change to your code

and hit 'play' which will compile all your code,
run all your tests, and maybe even
automatically generate documentation and
deploy your application.

What Can You Build?

● Compilation of software from source to
executable.
○ C, C++, Java, C#

● Packaging.
○ Python, JavaScript/Node (Interpreted Languages)
○ Web based applications

■ Combination of compiling source, or hybrid
source, along with configuration files.

● Unit and integration testing.
● Automatically generate documentation.

Good, Better, Best
Write the compile statement
each time on command line.

Using Make tool you can
simply/automate this process.

Make can be configured to
simplify even further and
improve performance: only re-
compile files that have
changed; identify the names of
the output files; which compiler
to use etc....

An Increase In Complexity

● As a project grows a Make file can become
very complicated.

● What usually happens is people start to roll
their own build framework hacks.

● The problems really start when your project
starts using 3rd party code that also uses a
hacked framework; what then?

● Even on small projects (20 people) about
10% of time is spent on build issues.

10% On What?

● Bad dependencies resulting in hard to fix
compilation errors.

● Bad dependencies resulting in bad software
images.

● Slow compilation.
● Time spent updating/fixing build files.
● ... there goes your profit.

Basics Concepts
Build System Workflows and Processes

Compiled Languages

> Git, SVN, Github
> Where all the
source is stored and
shared amongst
developers.

> Compiled objects.
> Each developer
has his/her own.

> Compilers.
> Documentation &
unit test generators.

> The physical
machines on
which the
compilation is
done.

> Method of software
packaging, distribution,
and installation on client
machines.

Interpreted Languages

> Similar to compiled except that the source code is not compiled.
> The compilation tools here are used for transforming the source files into
packages that are used by the system.

Web Applications

> A combination of compiled, interpreted, and static files (data & configuration).
> Some are copied directly (HTML) others are compiled first (Java).
> Tricky part here is that the users browser is involved in some of the
interpretation (JavaScript).

Unit Testing

> Similar to what was just discussed except that the build systems produces
several unit test suites and runs them.
> Similarly for integration testing. The process of preparing code and setting up
the integration tests and test cases is done automatically.

Static Analysis

> Analyze source code to try to identify bugs, security holes, or other hard to
detect problems that are not caught by compilation alone.
> Some tools: Coverity Prevent, Klocwork Insight, Findbugs
> No object code produced, just a report from the tool of choice and the
source code.

Document Generation

> Produces PDF, HTML and graphical images.
> Output to printer or upload to server

Types of Builds

● Developer/Private - checkout source from
version control, make changes, compile,
make more changes and re-compile.

● Release Build - done by release engineers.
Create a complete software package for the
software testers to test. When testers are
happy the same package goes to customer.

● Sanity Build - similar to release build but
does not go to customer. Automated
software error checking done several times a
day. a.k.a daily build or nightly build

Build Machines

> Native compilation - the software is executed on a target machine that is
identical to the build machine.
> Cross compilation - the software is executed on a target machine that is
different to the build machine (CPU, OS). e.g., XNA Game studio

Tools

Properties to Consider

● Convenience - how easy is for the people to
describe the build process?

● Correctness - does it generate all the
dependencies correctly, or in certain
situations will it miss things?

● Performance - how long does it take for the
build to complete?

● Scalability - as the project grows does the
tool scale & can it include other build tools.

Properties to Consider (Cont'd)

● The weight one places on each property
varies from developer to developer and
project to project; i.e., it really depends on
the situation.

● e.g., if you are building an iphone app you
may not care about scalability or
performance; however, if you're working on a
banking application with a large team of
developers then you will care.

The Tools

There are many tools out there, too many to
cover in one go, so we'll focus on five the cover
the different flavours of build tool classes:

○ Make
○ Apache Ant
○ SCons
○ CMake
○ Eclipse

Make

● Considered the first build tool.
● Most commonly used for C/C++

development.
● If you develop for legacy systems you will

most likely have to deal with Make.
● Not recommended for new projects.

Make (Cont'd)

● Created in 1977
● Uses the concept of a rule that defines all

the dependencies between files for
compilation purposes.

> myprog is a generated file that is created when running gcc compiler
and uses the input files prog.c and lib.c
> make is smart enough to look at file timestamps and re-compile only
when necessary.
> a programmer has to write this file by hand (know as makefile). In a
program with thousands of files and dependencies this can be a very
challenging and error prone task.

GNU Make

● Before GNU Make each OS had its own
version of Make. Each had slightly different
syntax. This made it obviously difficult for
developers.

● GNU Make supports many platforms and
therefore makes your life as a developer
slightly better. (Xcode)

GNU Make (Cont'd)

● GNU provides a language that can be
thought of as three separate languages:

● File dependencies - rule-based syntax for
specifying dependencies (similar to Make)

● Shell commands - a list of shell commands
enclosed in a rule that is triggered based on
some event, like a file change.

GNU Make (Cont'd)

● String Processing - ability to manipulate
GNU Make variables. This means that you
can create complex expressions.

GNU Make Pros

● Widely supported - mainly because its
been around so long.

● Very fast - written in C and highly optimized.
● Portable syntax - available on wide range of

platforms including Windows.
● Full language - if you can write a rule that

maps an input file to an output file you can
do any compilation you want. (Turing
Complete)

● First tool.

GNU Make Cons

● Inconsistent language design - the
language has evolved over a long time.
Some features follow a different syntax than
others.

● No framework - although you get lots of
good language support it does not work out
of the box.

● Lack of portability - although GNU Make is
more portable than Make it still has
problems: e.g., OS specific commands will
not port (ls, grep, dir...)

GNU Make Cons (Cont'd)

● Difficult debugging - makefile executing is
not guaranteed to be sequential.

● Ease of use - even though it's considered a
complete language it's not very easy to use
especially for beginners. You have to have a
deep understanding before doing relatively
simple things.

● Evaluation:
Convenience Correctness Performance Scalability

Poor Poor Excellent Excellent

GNU Make Alternatives

● Berkley Make
○ Berkeley Software Distribution (BSD): developed in

mid 1970's.
○ A version of Unix that includes a variant of the Make

tool known as Berkeley Make.
● NMake

○ Another variant of Make typically used in Visual
Studio.

○ Same syntax as Make or Berkeley Make but shell
commands are obviously targeted at Windows.

GNU Make Alternatives

● ElectricAccelerator and SparkBuild
○ Commercial tool made by Electric Cloud Inc.
○ ElectricAccelerator supports cluster based builds

and supports GNU Make and NMake syntax.
○ SparkBuild is the feature limited version of

ElectricAccelerator
● GUI Tool:

Apache Ant

● Most popular Java build tool.
● Supports compilation and generation of jar

files.
● Runs on many platforms: UNIX, Windows,

Mac OS.
● Developer specifies what needs to be done

via platform independent tasks.
○ Don't have to worry about platform specific shell

commands.
○ Developers don't' need to worry about what platform

their build is running on.

Apache Ant (Cont'd)

> Line 4: Create directory
> Line 5: Take all object files and package them into a jar.
> Line 6: Copy index file into pkg directory.

Apache Ant Pros

● Cross-platform support - no shell specific
language components means developers
don't have to worry about platform shell
support.

● Hidden dependency analysis -
dependency is handle within each task.

● Easy to learn - Simple language constructs
and grouping based on tasks. Complexity
hidden in tasks.

● 3rd Party Support - widest range of Java
compilation tool and language support.

Apache Ant Pros (Cont'd)

● Critical build system features are standard
○ automatic dependency analysis
○ multi directory support

Apache Ant Cons

● Lack of full programming language - not
scriptable and therefore difficult to express
complex activities.

● XML - ...
● No shell commands and only for Java.
● No persistent state from build to build,

dependency analysis invoked each time tool
is run.

● Evaluation:
Convenience Correctness Performance Scalability

Good Excellent Good Excellent

Apache Ant Alternatives

● NAnt - similar to Ant except that it focuses
on .NET languages.

● MSBuild - successor to NMake and in some
ways very similar to Ant.
○ Visual Studio auto-generates .proj files (equivalent to

build.xml for Ant).

SCons

● Uses Python as its description language.
● Version also exist for using Perl (Cons) or

Ruby (Rake) as description languages.
● Describe the build process using a sequence

of method calls to determine which objects
to create and what input files to use.

● Use for C and C++ languages.
● If starting a new C/C++ project consider

using SCons rather than Make.

Dev vs. Prod Build Example

> Setting flags based on whether the developer wants to build for development or production.

SCons Pros

● Uses general purpose language - Python
is a syntactically simple language and easy
to learn for beginners.

● Simple build construction - not much
overhead results in quick build definition for
simple programs.

● Builder method portability - the methods
hide the compilation tools. Developer can
focus on writing the build instead of worrying
about which tools are installed.

SCons Pro

● 100% Python - everything is done in Python
so you don't have to switch languages if you
want to do a shell script.

● Focus on correctness - one of the main
goals of SCons is to be correct; e.g., use
md5 file checksums to see if file has
changed

● Active development - young tool but is
actively developed; bugs fixed quickly and
new features added on a regular basis.

SCons Pro

● Debugging - several debugging options that
allow you to more easily narrow down
problems in your build.

SCons Cons

● Slow - The focus on correctness makes the
build process slow. More of a problem when
doing incremental builds.

● Language Support - good for C/C++ but not
so much for Java or C#.

● Memory footprint - in certain circumstances
uses more memory than other build systems
such as Make.

● Evaluation:
Convenience Correctness Performance Scalability

Excellent Excellent Good Good

SCons Alternatives

● As mentioned earlier: Cons (Perl), Rake
(Ruby)

● Cons was the original inspiration behind
SCons.
○ not developed since 2001
○ Cons website recommends to use SCons

● Rake is based on the Ruby language.
○ No automatic dependency analysis.
○ Follows more the GNU Make model where a

developer specifies the source, dependencies, and
commands to execute.

CMake

● Differs from other tools so far in that it
doesn't actually execute the build process.

● Translates a high level build description into
a format accepted by other tools.
○ high level description -> GNU Make tool.

● CMake generators are supported by most
platforms and languages.

CMake High Level View

> On Linux its default behaviour is to use a makefile based framework.
> If you can tell it to make Eclipse related project files.
> On Windows its default behaviour is to use the Visual Studio Compilers and
NMake.

CMake Flavour

> Line 1: a name to uniquely identify build.
> Line 2: min version of CMake required.
> Line 5-6: variable declaration and setting <name> <value>.
> Line 9-10: setting the properties of a file on disk.

CMake Pros

● Single description file - generate builds for
many build systems and platforms from one
description file.

● Ease of use - description language syntax is
easy to grasp even for beginners.

● Quality - the target build system are of high
quality (correctness); one primary focus of
CMake.

● Integration - easy to build end-to-end build
systems using CPack (packaging) and
CTest (testing).

CMake Cons

● Limited complexity - the auto-generated
build systems lack some features. If you're
goal is a complex build system then doing it
natively is recommended.

● Yet another language - although the syntax
is relatively simply it's another
language/framework you have to learn since
it doesn't leverage other languages/tools.

CMake Cons

● Documentation - not as readable as for
other tools. Examples are either difficult to
follow are out of date with current version.

● Cross-platform - although it does support
cross platform development you may still
need to tinker with the native build tool.

● Evaluation:
Convenience Correctness Performance Scalability

Good Excellent Excellent Excellent

CMake Alternatives

● Automake - part of the Autotools suite.
○ creates a makefile based on a high level description

of the build process
○ tightly coupled with GNU development environment -

> UNIX type systems only.
● Qmake - part of Qt development

environment
○ Qt is designed for cross-platform development and

as a result so is Qmake.

Eclipse

● It's an IDE but also a build tool.
○ The build tool is one of its many widgets.

● It can also interface with external build tools
if required.

● Works with Java, C/C++, Python, Perl, PHP,
UML ...

● Lots of the build aspects are hidden from the
developer.
○ The IDE is able to infer the build setup from the

structure of the software.

Eclipse Files

> What you see is not what you get. Eclipse auto-
generates folders for the source and folders for
the builds.
> This is fine because developers don't care about
.class files. They care about the source and
execution. Eclipse takes care of the build.

Eclipse Files .project

> Auto-generated by Eclipse
> Expresses how the project should be configured.

Eclipse Files .classpath

> Again, auto-generated by Eclipse
> Describes how to build the project.
> Manageable via GUI.

Eclipse Build

● All done through the IDE.
● Every time you save a Java file, the file is

compiled and the builder is invoked.
○ This is invisible to you.

● Errors or warnings weather from compilation
or build are displayed right away.

Eclipse Pros

● No description files - if you use Eclipse
JDT everything is done for you and
accessible via a GUI.

● Integration - compilation and build are
integrated into one tool.

● Wide project support - many languages
and frameworks are supported via plugins.
The project plugins are aware of the
compilation and build tools required.

Eclipse Cons

● Complexity - too many buttons and
dialogue boxes; you have to find out where
things are hidden.

● CPU & Memory - relatively speaking,
requires more CPU and memory than other
build systems. Not really noticeable on small
projects.

● Build Process - builds are automatically
incremental. Ties the build process tightly
with developers workflow.

Eclipse Cons (Cont'd)

● Hidden - the build process is hidden from
the developer.

● Build complexity - more complex build
workflows require external tools or additional
plugins.

● Evaluation:
Convenience Correctness Performance Scalability

Good Excellent Good Poor

Eclipse Alternatives

● CDT for Eclipse
○ C/C++ development and tools

■ compilers, linkers
■ builders

● Other IDE's are also available with varied
levels of automation as far as builds are
concerned:
○ Visual Studio

● Cloud based IDE's
○ Cloud 9
○ ...

Fin

