
2/9/2013

1

SENG 371
SOFTWARE EVOLUTION

VERSION CONTROL SYSTEMS

Prepared by

Pratik Jain1

LAB OUTLINE

 Introduction to Version Control Systems

 Subversion

 Git and Github

2

INTRODUCTION TO VCS

 A version control system (also known as a Revision Control
System) is a repository of files, often the files for the source code
of computer programs, with monitored access. Every change made
to the source is tracked, along with who made the change, why
they made it, and references to problems fixed, or enhancements
introduced, by the change.

3

 Our own Version Control System, when we save
file using different names to remember what
changes we have done.

For ex – pratik_old.c
pratik_new.c
pratik_change.c

If we are smart enough then pratik_V1.c
pratik_V2.c

4

WHY VERSION CONTROL SYSTEM(VCS)? I

Version control systems are essential for any form of distributed,
collaborative development.

 Backup and Restore. Files are saved as they are edited, and
you can jump to any moment in time.

 Synchronization. Lets people share files and stay up-to-date
with the latest version.

 Short-term undo. Playing with your files is easy, Throw away
your changes and go back to the “last known good” version in the
database.

 Long-term undo. You made a change year ago, and realize later
it had a bug. Jump back to the old version.

5

WHY VERSION CONTROL SYSTEM(VCS)? II

 Track Changes. Leave comment every time file is updated
explaining why the change happened.

 Track Ownership. Name (or id) of each person who made the
change is tagged.

 Sandboxing. While making a big change, make temporary
changes in an isolated area. Test before “checking in” your
changes.

 Branching and merging. A larger sandbox. You can branch a
copy of your code into a separate area and modify it in isolation
(tracking changes separately). Later, you can merge your work
back into the common area.

6

2/9/2013

2

BASIC SETUP

Most version control systems involve the following concepts, though
the labels may be different.

 Repository : The database storing the files.

 Server: The computer storing the repository.

 Client: The computer connecting to the repository.

 Working Set/Working Copy: Your local directory of files, where
you make changes.

 Trunk/Main: The primary location for code in the repository.
Think of code as a family tree — the trunk is the main line.

7

BASIC ACTIONS I

 Add: Put a file into the repository for the first time, i.e. begin
tracking it with Version Control.

 Revision: What version a file is on (v1, v2, v3, etc.).

 Head: The latest revision in the repository.

 Check out: Download a file from the repository.

 Check in: Upload a file to the repository (if it has changed). The
file gets a new revision number, and people can “check out” the
latest one.

8

BASIC ACTIONS II

 Checkin Message: A short message describing what was
changed.

 Changelog/History: A list of changes made to a file since it was
created.

 Update/Sync: Synchronize your files with the latest from the
repository. This will give you grab latest revisions of all files.

 Revert: Throw away your local changes and reload the latest
version from the repository.

9

ADVANCED ACTIONS I

 Branch: Create a separate copy of a file/folder for private use like
bug fixing or testing.

 Diff/Change/Delta: Finding the differences between two files.
Useful for seeing what changed between revisions.

 Merge (or patch): Apply the changes from one file to another, to
bring it up-to-date. For example, you can merge features from one
branch into another.

 Conflict: When pending changes to a file contradict each other
(both changes cannot be applied).

10

GRAPH OF REVISION CONTROLLED

PROJECT

11

ADVANCED ACTIONS II

 Resolve: Fixing the changes that contradict each other and
checking in the correct version.

 Locking: Taking control of a file so nobody else can edit it until
you unlock it. Some version control systems use this to avoid
conflicts.

 Breaking the lock: Forcibly unlocking a file so you can edit it. It
may be needed if someone locks a file and goes on vacation or is
not available.

 Check out for edit: Checking out an “editable” version of a file.
Some VCS have editable files by default, others require an
explicit command.

12

2/9/2013

3

SUMMARY(SO FAR……)

13

TYPES OF VCS

Client-server model or Centralized- Developers use a shared
single repository.

14

 Distributed version control systems(DVCS) or
Decentralized - Developer works directly with his or her own
local repository, and changes are shared between repositories as a
separate step.

15

DISTRIBUTED VCS(BETTER EXPLAINATION)

16

 Concurrent Version
System(CVS)

 Subversion

 ClearCase(by IBM)

 Visual Source Safe(by
microsoft

 Git

 Mercurial

 Bazaar

 SVK

 BitKeeper

Client Server VCS Tools Distributed VCS Tools

17

 CVS : First Come, first Serve System where users have to publish
changes, otherwise there can be a conflict between code of two
programmers. The CVS server runs on Unix-like systems, with
client software that runs on multiple operating systems.

- There is no atomic operation support.

- Moving or renaming files does not include version update.

- Branch operations are expensive as it is not designed for long-
term branching

 Mercurial: It’s a distributed version control system,
Originally made to compete with Git for linux development.
Mercurial is implemented in python as opposed to C. Its easier to
learn than Git because of some common features of SVN.

18

2/9/2013

4

WHAT IS SUBVERSION?

 Subversion is a free/open source version control system (VCS).
That is, Subversion manages files and directories, and the changes
made to them, over time. This allows you to recover older versions
of your data or examine the history of how your data changed.

 Subversion can operate across networks, which allows it to be
used by people on different computers. At some level, the ability
for various people to modify and manage the same set of data
from their respective locations fosters collaboration.

19

WHY SUBVERSION?

 To prevent database from being corrupted, SVN employs a
concept called atomic operations. Either all of the changes made
to the source are applied or none are applied, meaning that no
partial changes will break the original source.

20

SUBVERSION’S COMPONENTS

 Svn - The command-line client program

 Svnversion - A program for reporting the state (in terms of
revisions of the items present) of a working copy

 Svnlook - A tool for directly inspecting a Subversion repository

 Svnadmin - A tool for creating, tweaking, or repairing a
Subversion repository

 mod_dav_svn - A plug-in module for the Apache HTTP Server,
used to make your repository available to others over a network

21

 Svnserve - A custom standalone server program, runnable as a
daemon process or invokable by SSH; another way to make your
repository available to others over a network

 Svndumpfilter - A program for filtering Subversion repository
dump streams

 Svnsync - A program for incrementally mirroring one repository
to another over a network

 Svnrdump - A program for performing repository history dumps
and loads over a network

22

SUBVERSION CLIENTS I

 TortoiseSVN is a Windows shell extension, which gives feedback
on the state of versioned items by adding overlays to the icons in
the Windows Explorer. Repository commands can be executed
from the enhanced context menu provided by Tortoise.

 SmartSVN provides a similar Explorer integration, but also can
be used as a standalone SVN client for different platforms.

 EasySVN is a Subversion client with automatic update and
commit. It converts any Subversion repository into a shared folder
with automatic replication.

23

SUBVERSION CLIENTS II

 RabbitVCS A graphical front-end for version control systems
available on Linux, adding Subversion functionality into the file
managers Nautilus and Thunar and provides plugin for Gedit
editor, based around the feature set of TortoiseSVN on Windows.

 WebSVN Offering an online view of a repository, history, and
commit comments, as well as opening code in a syntax colored
view. The code view is not editable, at least in the demo. Also
allows you to view the difference between versions of a file or
directory. Written in PHP and opens in a browser.

24

2/9/2013

5

SUMMARY

25

SVN & GIT HOSTING

 http://unfuddle.com/- Widget in Mac OS, popular among software
development teams. Free for small project of 2 people.

 http://www.sliksvn.com/- Another option for svn and git hosting
but not as good as unfuddle.

 http://beanstalkapp.com/ – Secure, private, reliable, and good
interface. Costs $15/month.

 http://code.google.com/hosting/- Best open source hosting, good for
small/large team working together.

26

LAB EXERCISE

 Make a team of 4 people.

 Create a Google code project(Give permissions to other members).

 Select Subversion as a repository.

 Connect to Google code repository.

 Need Access to some SVN client to access repository.

 Use tortoise SVN client to “Checkout” your repository.

27

 Whatever client we are using, we need to enter URL of repository
along with username and password in client.

 URL looks like this :-
https://svn<servernumber>.hostname.com/svn/<repository>

 Right click on root folder, checkout the files from repo. Now
create a working folder. You can add files to this folder.

 After checking out the project files, you can edit them from the
directory you’ve created on your local computer.

 After editing files, to commit them, click the check In button in
the toolbar to update the changes. 28

