
SENG 371 LAB 5 Source Management Tools

1

LAB MANUAL GIT

BY PRATIK JAIN

STARTING WITH GIT :

To start with git bash, we need to authenticate ourselves so that for every

commit, git can use this information.

We can remove -- global option to override this information for some other

projects.

SENG 371 LAB 5 Source Management Tools

2

GIT EDITOR

By default Git uses default text editor which is Vi or Vim but you can change

editor such as emacs by following command.

git config --global core.editor emacs

GIT CONFIG

It will show all the attributes of configuration file which we have set.

git config --list

GIT HELP

It will open a browser window as a help for config command.

git help config

SENG 371 LAB 5 Source Management Tools

3

CREATING REPOSITORY

It will create .git directory in your project directory.

git init

CLONING REPOSITORY

Instead of using https://, you can use git:// protocol or user@server:/path.git,

which uses the SSH transfer protocol.

SENG 371 LAB 5 Source Management Tools

4

GIT STATUS

If you run this command, just after cloning repository. You will see there is

nothing to commit all files are tracked and unmodified.

You can use –s option for checking status in short and concise way.

It shows result which has below terminology.

? Untracked files

A Added files

M Modified files

R Rename

SENG 371 LAB 5 Source Management Tools

5

TRACKING NEW FILES

Create a first file gitFirst.txt and check status. We need to add this new gitFirst.txt

file and make it ready to commit but we can see clone repository or file textmate

still untracked.

git add gitFirst.txt

SENG 371 LAB 5 Source Management Tools

6

Create a file second.txt in project folder and check status again.

Add file gitSecond.txt to stage for commit.

SENG 371 LAB 5 Source Management Tools

7

Modify gitSecond.txt file and check git status again.

While checking again, you will find gitSecond.txt is in both staged and unstaged

area.

Git stage file as you run git add command, so if you commit now git will send a

gitSecond.txt version which you added it earlier and is in staged area.

After each modification you need to add a file.

SENG 371 LAB 5 Source Management Tools

8

GIT IGNORING

There can be bunch of files, in your project directory which you want git to ignore.

Git should not show them to add or as untracked. These are basically auto

generated files like log files, or temporary files.

To ignore those files create .gitignore named file listing patterns to match files.

SENG 371 LAB 5 Source Management Tools

9

In .gitignore file list all patterns which you want git to ignore.

Create a .class file to check that git is ignoring those class files or not.

SENG 371 LAB 5 Source Management Tools

10

GIT DIFF

You can check your staged and unstaged changes through git status but git diff

will give details of what is changed in files.

To see what you have changed but not yet staged, type git diff with no other

arguments.

Git diff --staged

It gives the details of files which you have staged and will go into next commit.

SENG 371 LAB 5 Source Management Tools

11

It’s important to note that git diff by itself doesn’t show all changes made since

your last commit — only changes that are still unstaged. If you have staged all

your changes, git diff will give you no output.

SENG 371 LAB 5 Source Management Tools

12

GIT COMMIT

Check if all the files are staged, then you can commit. If any file is in unstaged area

that won’t go in commit.

Just type git commit to commit. Git commit command gives you access to write

some message before committing.

SENG 371 LAB 5 Source Management Tools

13

This will commit all your changes which are staged with SHA1 reference.

Without Message in editor

git commit –m “Commiting First Changes”

If you modify some file, for example – gitSecond.txt and try to commit without

adding it. Then it won’t be possible. First you have to add then commit.

You can use commit with option –a which will commit and add all the unstaged

files.

SENG 371 LAB 5 Source Management Tools

14

We can see from our commit, which branch you committed to (master), what

SHA-1 checksum the commit has (1e86e15), how many files were changed, and

statistics about lines added and removed in the commit.

Everytime you are commiting, you are taking snapshots of your staging area.

GIT REMOVE

To remove files which are tracked or in staging area, you need git rm command

and then commit.

Removes all the Files that end with ~

$ git rm *~

If you simply remove the file from your working directory using rm command, file

will be in unstaged area(“Changes not staged for commit”).

SENG 371 LAB 5 Source Management Tools

15

GIT MOVE

Git explicitly does not track file movement, and it does not store any metadata

like if you rename the file. But git has mv command.

SENG 371 LAB 5 Source Management Tools

16

This git mv command is actually equivalent to three commands stated in below

example.

SENG 371 LAB 5 Source Management Tools

17

GIT LOG

Gives you details with checksum and messages in chronlogical order of commits.

 git log

Option -p will show differences introduced in each commit and -2 will restrict it to

only last two entries.

git log –p -2

If we want to see some abbreviated stats for each commit. It also puts summary

of information at the end.

git log --stat

Option --pretty changes the log output to formats other than the default. There

are some predefined formats.

git log --pretty=format:"%h - %an, %ar : %s“

Where %h is abbr. commit hash, %an is author name, %ar is author date(relative)

and %s is subject or message.

%ad can also be used for date format.

SENG 371 LAB 5 Source Management Tools

18

GIT GUI FOR HISTORY

Visualize tool with git to check commit history. Its basically a git log tool and

accepts all options which git log provides.

gitk

It comes with git gui tool also.

 git gui

SENG 371 LAB 5 Source Management Tools

19

GIT UNDO

 --amend option with git commit command gives you freedom to revert your

changes and then commit with new message.

Here is an example when you forgot to add some files in a first commit, commit

with amend having new message.

SENG 371 LAB 5 Source Management Tools

20

UNSTAGING STAGED FILE

If you modify two files and want to commit them as two separate changes, but

accidentally both changes are staged now. You can unstage changes using git

reset head command

SENG 371 LAB 5 Source Management Tools

21

UNMODIFYING MODIFIED FILE

Files which are not staged and are modified, we can unmodify it using git

checkout -- <file>. For ex –unmodify a file which you have changed like gitFirst.txt.

Remember any changes using this command, will be gone forever.

SENG 371 LAB 5 Source Management Tools

22

REMOTE REPOSITORIES

To check all remote handles, from a particular repository. We can use git remote

command. Cloning a repository from any Git server gives a default name origin to

that server.

-v option gives the full name of repository which git has stored with short name.

In git if we have multiple git remote repository. We can easily pull from any of

repositories but push can be done with only ssh url origin. For ex-

$ cd grit
$ git remote -v
bakkdoor git://github.com/bakkdoor/grit.git
cho45 git://github.com/cho45/grit.git
defunkt git://github.com/defunkt/grit.git
koke git://github.com/koke/grit.git
origin git@github.com:mojombo/grit.git

SENG 371 LAB 5 Source Management Tools

23

ADDING REMOTE REPOSITORY

Create a new repository in Github, then add a remote repository using :

git remote add [shortname] [url]

SENG 371 LAB 5 Source Management Tools

24

FETCH REMOTE REPOSITORY

We can fetch from short named remote repository prat using:

git fetch [shortname]

After fetching we will have all the references to all the branches from this remote

repository. Fetch only pulls data to your local repository, any work you want to

merge you have to do it manually.

git fetch origin will fetch any new data pushed to the server you cloned. Because

origin is the default name of that server you cloned from.

SENG 371 LAB 5 Source Management Tools

25

GIT BRANCH

Create a git branch named testing.

git branch testing

GIT CHECKOUT

Switch to branch named testing.

git checkout testing

SENG 371 LAB 5 Source Management Tools

26

comm

itcd

comm

it

We can combine previous two commands create a git branch and then switching

it to using –b option with checkout.

git checkout –b testing

Now head will point to testing.

Now you started working on your branch, and made few changes and commit.

Think project history as :- Master

78ec4 48rf1 74sd2 45sd5

 Testing

 Head

SENG 371 LAB 5 Source Management Tools

27

DIFFERENCES BETWEEN GIT CLONE, GIT PULL, GIT FETCH

git pull will pull down from remote whatever trunk we are asking for, and it will

instantly merge also by default into the local branch you are in when you make

the request. Pull is a high-level request that runs ‘fetch’ then a ‘merge’ by default.

For ex-

$ git checkout localBranch
$ git pull origin master
$ git branch
Master
*localBranch

The above will merge the remote “master” branch into the local “localBranch”.

git fetch it is similar to pull, only difference is it won’t do merging be default.

For ex-

$ git checkout localBranch
$ git fetch origin remoteBranch
$ git branch
master
*localBranch
remoteBranch

git clone Git clone will clone a repo into a newly created directory. It’s useful for

when you’re setting up your local repository.

$ cd newRepository
$ git clone git@github.com:whatever/something.git
$ git branch
*master
remoteBranch

SENG 371 LAB 5 Source Management Tools

28

Git clone additionally creates a remote called ‘origin’ for the repo cloned from,

sets up a local branch based on the remote’s active branch (generally master),

and creates remote-tracking branches for all the branches in the repo.

If you get stuck, run ‘git branch -a’ and it will show you exactly what’s going on

with your branches. You can see which are remotes and which are local.

GIT PUSH

To share your work to others you can push your branch to origin or to some other

remote repository.

git push [remote name][branch name]

SENG 371 LAB 5 Source Management Tools

29

GIT TAGGING

If at some point you feel this part is very important in history of your code or

whatever you are working for. You can tag your work. Generally, people uses it

for releasing versions like v1.0, v2.0

create a tag using:

git tag –a [tag name] –m “ Message”

-a option is for creating annotated tags.

To create lightweight or temporary tags do not specify –a or – m option.

SENG 371 LAB 5 Source Management Tools

30

SHARING TAG

Git push does not transfer tags to remote servers we have to explicitly push git

tags to remote servers using command:

git push origin v1.5

SENG 371 LAB 5 Source Management Tools

31

GIT MISCELLANEOUS

Git Tab for Auto-Completion

Git Aliases

$ git config --global alias.co checkout
$ git config --global alias.br branch
$ git config --global alias.ci commit
$ git config --global alias.st status

Unsetting a Git Aliases

$ git config --global --unset alias.myAlias

SENG 371 LAB 5 Source Management Tools

32

REFERENCES

SVN-Book

GIT- Book

GIT - Quick Reference

http://svnbook.red-bean.com/en/1.7/svn-book.pdf
http://git-scm.com/book
http://jonas.nitro.dk/git/quick-reference.html

