
SLIQ: A Fast Scalable Classi�er for Data MiningManish Mehta, Rakesh Agrawal and Jorma RissanenIBM Almaden Research Center650 Harry Road, San Jose, CA 95120Abstract. Classi�cation is an important problem in the emerging �eldof data mining. Although classi�cation has been studied extensively inthe past, most of the classi�cation algorithms are designed only formemory-resident data, thus limiting their suitability for data mininglarge data sets. This paper discusses issues in building a scalable classi-�er and presents the design of SLIQ1, a new classi�er. SLIQ is a decisiontree classi�er that can handle both numeric and categorical attributes.It uses a novel pre-sorting technique in the tree-growth phase. This sort-ing procedure is integrated with a breadth-�rst tree growing strategyto enable classi�cation of disk-resident datasets. SLIQ also uses a newtree-pruning algorithm that is inexpensive, and results in compact andaccurate trees. The combination of these techniques enables SLIQ to scalefor large data sets and classify data sets irrespective of the number ofclasses, attributes, and examples (records), thus making it an attractivetool for data mining.1 IntroductionThe success of computerized data management has resulted in the accumulationof huge amounts of data in several organizations. There is a growing perceptionthat analyses of these large data bases can turn this \passive data" into useful\actionable information". The recent emergence of Data Mining, or KnowledgeDiscovery in Databases, is a testimony to this trend. Data mining involves thedevelopment of tools that can extract patterns from large data bases.Classi�cation is an important data mining problem [1] and can be describedas follows. The input data, also called the training set, consists of multiple ex-amples (records), each having multiple attributes or features. Additionally, eachexample is tagged with a special class label. The objective of classi�cation is toanalyze the input data and to develop an accurate description or model for eachclass using the features present in the data. The class descriptions are used toclassify future test data for which the class labels are unknown. They can also beused to develop a better understanding of each class in the data. Applications ofclassi�cation include credit approval, target marketing, medical diagnosis, treat-ment e�ectiveness, store location, etc.Classi�cation has been studied extensively (see [13] for an excellent overviewof various techniques). However, the existing classi�cation algorithms have the1 SLIQ stands for Supervised Learning In Quest, where Quest is the Data Miningproject at the IBM Almaden Research Center.

problem that they do not scale. Most of the current algorithms have the restric-tion that the training data should �t in memory. This is perhaps a result of thetype of applications to which classi�cation has been hitherto applied. In manyapplications, there were simply not many training examples available. As a mat-ter of fact, the largest dataset in the Irvine Machine Learning repositary is only700KB with 20000 examples. Even in [5], a classi�er built with database con-siderations, the size of the training set was overlooked. Instead, the focus wason building a classi�er that can use database indices to improve the retrievale�ciency while classifying test data.In data mining applications, very large training sets with several million ex-amples are common. Our primary motivation in this work is to design a classi�erthat scales well and can handle training data of this magnitude. The ability toclassify larger training data can also improve the classi�cation accuracy [2][3].Given our goal of classifying large data sets, we focus mainly on decisiontree classi�ers [4][10]. Decision tree classi�ers are relatively fast compared toother classi�cation methods. Methods like neural networks can have extremelylong training times even for small datasets. A decision tree can be convertedinto simple and easy to understand classi�cation rules [10]. They can also beconverted into SQL queries for accessing databases [5]. Finally, tree classi�ersobtain similar and sometimes better accuracy when compared with other classi-�cation methods [7]. Figure 1 gives an example of a decision tree classi�er for atoy dataset of six examples.
Age Salary Class

30

23

40

55

55

45

15

75

40

100

60

G

B

G

G

G

B

65

(Salary <= 50)

(Age <= 35)

(Salary <= 40)

B G B GFig. 1. Example of a decision treeThe idea of modifying tree classi�ers to enable them to classify large datasetshas been explored previously. Previous proposal include sampling of data at eachdecision tree node [2], and discretization of numeric attributes [2]. These meth-ods decrease classi�cation time signi�cantly but also reduce the classi�cationaccuracy. Chan and Stolfo [3] have studied the method of partitioning the inputdata and then building a classi�er for each partition. The outputs of the mul-tiple classi�ers are then combined to get the �nal classi�cation. Their resultsshow that classi�cation using multiple classi�ers never achieves the accuracy ofa single classi�er that can classify all of the data.The decision-tree classi�er we present, called SLIQ, uses novel techniquesthat improve learning time for the classi�er without loss in accuracy. At the sametime, these techniques allows classi�cation to be performed on large disk-residenttraining data. Consequently, given training data that can be handled by other

decision tree classi�ers, SLIQ exhibits the same accuracy characteristics, butexecutes faster and produces small trees. However, SLIQ imposes no restrictionson the amount of training data or the number of attributes in the examples.Therefore, SLIQ can potentially obtain higher accuracies by classifying largertraining datasets which cannot be handled by other classi�ers.The rest of the paper is organized as follows. Section 2 describes a genericdecision tree classi�er and Section 3 discusses scalability issues. Sections 4 and 5present the design and a detailed performance analysis of SLIQ, respectively.Finally, Section 6 contains our conclusions.2 Decision-Tree Classi�cationMost decision-tree classi�ers (e.g. CART [4], C4.5 [10]) perform classi�cation intwo phases: Tree Building and Tree Pruning.Tree Building An initial decision tree is grown in this phase by repeatedlypartitioning the training data. The training set is split into two or more partitionsusing an attribute2. This process is repeated recursively until all the examplesin each partition belong to one class. Figure 2 gives an overview of the process.MakeTree(Training Data T)Partition(T);Partition(Data S)if (all points in S are in the same class)) then return;Evaluate splits for each attribute AUse best split found to partition S into S1 and S2;Partition(S1);Partition(S2);Fig. 2. Tree-Building AlgorithmTree Pruning The tree built in the �rst phase completely classi�es the trainingdata set. This implies that branches are created in the tree even for spurious\noise" data and statistical
uctuations. These branches can lead to errors whenclassifying test data. Tree pruning is aimed at removing these branches from thedecision tree by selecting the subtree with the least estimated error rate.3 Scalability Issues3.1 Tree BuildingThere are two main operations during tree building: i) evaluation of splits foreach attribute and the selection of the best split and ii) creation of partitionsusing the best split. Having determined the overall best split, partitions canbe created by a simple application of the splitting criterion to the data. The2 Multivariate splits based on values of multiple attributes have also been proposed[4].

complexity lies in determining the best split for each attribute. The choice ofthe splitting criterion depends on the domain of the attribute being numeric orcategorical (attributes with a �nite discrete set of possible values). But let us�rst specify how alternative splits for an attribute are compared.3.1.1 Splitting Index A splitting index is used to evaluate the \goodness"of the alternative splits for an attribute. Several splitting indices have beenproposed in the past[13]. We use the gini index, originally proposed in [4]. If adata set T contains examples from n classes, gini(T) is de�ned asgini(T) = 1�X p2jwhere pj is the relative frequency of class j in T .3.1.2 Splits for Numeric Attributes A binary split of the formA � v, wherev is a real number, is used for numeric attributes. The �rst step in evaluatingsplits for numeric attributes is to sort the training examples based on the valuesof the attribute being considered for splitting. Let v1; v2; � � � ; vn be the sortedvalues of a numeric attribute A. Since any value between vi and vi+1 will dividethe set into the same two subsets, we need to examine only n� 1 possible splits.Typically, the midpoint of each interval vi � vi+1 is chosen as the split point.The cost of evaluating splits for a numeric attribute is dominated by the cost ofsorting the values. Therefore, an important scalability issue is the reduction ofsorting costs for numeric attributes.3.1.3 Splits for Categorical Attributes If S(A) is the set of possible valuesof a categorical attribute A, then the split test is of the form A 2 S0 , whereS0 � S. Since the number of possible subsets for an attribute with n possiblevalues is 2n, the search for the best subset can be expensive. Therefore, a fastalgorithm for subset selection for a categorical attribute is essential.3.2 Tree PruningThe tree pruning phase examines the initial tree grown using the training dataand chooses the subtree with the least estimated error rate. There are two mainapproaches to estimating the error rate: one using the original training datasetand the other using an independent dataset for error estimation.Cross-validation [4] belongs to the �rst category. Multiple samples are takenfrom the training data and a tree is grown for each sample. These multiple treesare then used to estimate the error rates of the subtrees of the original tree.Although this approach selects compact trees with high accuracies, it is inap-plicable for large data sets, where building even one decision tree is expensive.Alternative approaches [10] that use only a single decision tree often lead tolarge decision trees.The second class of methods divide the training data into two parts where onepart is used to build the tree and the other for pruning the tree. The data used

for pruning should be selected such that it captures the \true" data distribution,which brings up a potential problem with this method. How large should the testsample be and how should it be selected? Moreover, using portions of the dataonly for pruning, reduces the number of training examples available for the treegrowing phase, which can lead to reduced accuracy.The challenge for a scalable classi�er in the pruning phase is to use an algo-rithm that is fast, and leads to compact and accurate decision trees.4 SLIQ Classi�erWe �rst give a brief overview of SLIQ and then give details about the techniquesused in SLIQ to address the scalability issues identi�ed in the previous section.4.1 OverviewSLIQ is a decision tree classi�er that can handle both numeric and categoricalattributes. SLIQ uses a pre-sorting technique in the tree-growth phase to reducethe cost of evaluating numeric attributes. This sorting procedure is integratedwith a breadth-�rst tree growing strategy to enable SLIQ to classify disk-residentdatasets. In addition, SLIQ uses a fast subsetting algorithmfor determining splitsfor categorical attributes. SLIQ also uses a new tree-pruning algorithm based onthe Minimum Description Length principle [11]. This algorithm is inexpensive,and results in compact and accurate trees. The combination of these techniquesenables SLIQ to scale for large data sets and classify data sets with a largenumber of classes, attributes, and examples.4.2 Pre-Sorting and Breadth-First GrowthFor numeric attributes, sorting time is the dominant factor when �nding the bestsplit at a decision tree node [2]. Therefore, the �rst technique used in SLIQ is toimplement a scheme that eliminates the need to sort the data at each node ofthe decision tree. Instead, the training data are sorted just once for each numericattribute at the beginning of the tree growth phase.To achieve this pre-sorting, we use the following data structures. We create aseparate list for each attribute of the training data. Additionally, a separate list,called class list, is created for the class labels attached to the examples. An entryin an attribute list has two �elds: one contains an attribute value, the other anindex into the class list. An entry of the class list also has two �elds: one containsa class label, the other a reference to a leaf node of the decision tree. The ithentry of the class list corresponds to the ith example in the training data. Eachleaf node of the decision tree represents a partition of the training data, thepartition being de�ned by the conjunction of the predicates on the path fromthe node to the root. Thus, the class list can at any time identify the partitionto which an example belongs. We assume that there is enough memory to keepthe class list memory-resident. Attribute lists are written to disk if necessary.Initially, the leaf reference �elds of all the entries of the class list are set topoint to the root of the decision tree. Then a pass is made over the training

TRAINING DATA

Class
List

Class
List

Age Salary Class

30

23

40

55

55

45

15

75

40

100

60

G

B

G

G

G

B

65

Index IndexAge Salary

30

23

40

55

55

45

1

2

3

4

5

6

215

375

440

5100

660

LeafClass

G

B

G

B

G

G

N1

N1

N1

N1

N1

N1

1

2

3

4

5

6

165

Age List Salary List Class List

AFTER PRE−SORTING

Fig. 3. Example of Pre-SortingEvaluateSplits()for each attribute A dotraverse attribute list of Afor each value v in the attribute list do�nd the corresponding entry in the class list, andhence the corresponding class and the leaf node (say l)update the class histogram in the leaf lif A is a numeric attribute thencompute splitting index for test (A � v) for leaf lif A is a categorical attribute thenfor each leaf of the tree do�nd subset of A with best splitFig. 4. Evaluating Splitsdata, distributing values of the attributes for each example across all the lists.Each attribute value is also tagged with the corresponding class list index. Theattribute lists for the numeric features are then sorted independently. Figure 3illustrates the state of the data structures before and after pre-sorting.4.2.1 Processing Node Splits Rather than using a depth-�rst strategy usedin the earlier decision-tree classi�ers, we grow trees breadth-�rst. Consequently,splits for all the leaves of the current tree are simultaneously evaluated in onepass over the data. Figure 4 gives a schematic of the evaluation process.To compute the gini splitting-index (see Section 3.1) for an attribute at anode, we need the frequency distribution of class values in the data partitioncorresponding to the node. The distribution is accumulated in a class histogramattached with each leaf node. For a numeric attribute, the histogram is a list ofpairs of the form <class, frequency>. For a categorical attribute, this histogramis a list of triples of the form <attribute value, class, frequency>.Attribute lists are processed one at a time (recall that the attribute lists canbe on disk). For each value v in the attribute list for the current attribute A, we

IndexSalary

215

375

440

5100

660

LeafClass

G

B

G

B

G

G

1

2

3

4

5

6

165

Salary List Class List

Class
List

N2

N3

N2

N3

N3

N3

1

2

N1

N2 N3

0L L 000
1 3R R 11

N2 N3

1

2
GB GB

2

1

L

R

L

R

0
0

0
01

1 1
3

N2 N3

GB GB

1
30

L

R

L

R

000
11

N2 N3

GB GB

Update class histograms and

Evaluate first split for node N2 (salary <= 15)

Update class histograms and

Evaluate first split for node N3 (salary <= 40)

Initial Histograms

Fig. 5. Evaluating Splits: Example�nd the the corresponding entry in the class list, which yields the correspondingclass and the leaf node. We now update the histogram attached with this leafnode. If A is a numeric attribute, we compute at the same time the splitting-index for the test A � v for this leaf. If A is a categorical attribute, we waittill the attribute list has been completely scanned and then �nd the subset of Awith the best split. Thus, in one traversal of an attribute list, the best split usingthis attribute is known for all the leaf nodes. Similarly, with one traversal of allof the attribute lists, the best overall split for all of the leaf nodes is known. Thebest split test is saved with each of the leaf nodes.Figure 5 illustrates the evaluation of splits on the salary attribute for thesecond level of the decision tree. The example assumes that the data has beeninitially split on the age attribute using the split age � 35. The class histogramsre
ect the distribution of the points at each leaf node as a result of the split.The L values represent the distributions for examples that satisfy the test andR values represent examples that do not satisfy the test. We show how theclass histograms are updated as each split is evaluated. The �rst value in thesalary list belongs to node N2. So the �rst split evaluated is (salary � 15)for N2. After this split, the corresponding example (salary 15, class index 2)which satis�es the predicate belongs to the left branch and the rest belong tothe right branch. The class histogram of node N2 is updated to re
ect this fact.Next, the split (salary � 40) is evaluated for node N3. After the split, thecorresponding example (salary 40, class index 4) belongs to the left branch andthe class histogram of node N3 is updated to re
ect this fact.

4.2.2 Updating the Class List The next step is to create child nodes for eachof the leaf nodes and update the class list. Figure 6 gives the update process.UpdateLabels()for each attribute A used in a split dotraverse attribute list of Afor each value v in the attribute list do�nd the corresponding entry in the class list (say e)�nd the new class c to which v belongs by applyingthe splitting test at node referenced from eupdate the class label for e to cupdate node referenced in e to the child corresponding to the class cFig. 6. Updating Class ListAs an illustration, Figure 7 shows the class list being updated after the nodesN2 and N3 have been split on the salary attribute. The salary attribute list isbeing traversed and the class list entry (entry 4) corresponding to the salaryvalue of 40 is being updated. First, the leaf reference in the entry 4 of class listis used to �nd the node to which the example used to belong (N3 in this case).Then, the split selected at N3 is applied to �nd the new child to which theexample belongs (N6 in this case). The leaf reference �eld of entry 4 in the classlist is updated to re
ect the new value.
Index IndexAge Salary

30

23

40

55

55

45

1

2

3

4

5

6

215

375

440

5100

660

LeafClass

G

B

G

B

G

G

1

2

3

4

5

6

165

Age List Salary List Class List

Class
List

Class
List

N3

N3

N3

N4

N6

N1

N2
N3

(Salary <= 50)

N4 N5 N6 N7

(Age <= 35)

(Salary <= 40)N2

N3

(New value)Fig. 7. Class List Update: Example4.2.3 An Optimization While growing the tree, the above two steps of split-ting nodes and updating labels are repeated until each leaf node becomes a purenode (i.e. it contains examples belonging to only one class) and no further splitsare required. Note that some nodes may become pure earlier than others and itmay be better to condense the attribute lists to discard entries corresponding toexamples belonging to these pure nodes. This optimization can easily be imple-mented by rewriting condensed lists when the the savings from reading smallerlists outweigh the extra cost of writing condensed lists. The information requiredto make this decision is available from the previous pass over the data.The important thing to note about pre-sorting and breadth-�rst growth isthat these strategies allow SLIQ to scale for large data sets with no loss in

accuracy. This is because the set of splits evaluated with and without pre-sortingis identical. Pre-sorting simply eliminates the task of resorting data at each nodeand removes the restriction that the training set be memory-resident.4.3 Subsetting for Categorical AttributesThe splits for a categorical attribute A are of the formA 2 S0 , where S0 � S andS is the set of possible values of attribute A. The evaluation of all the subsetsof S can be prohibitively expensive, especially if the cardinality of S is large.SLIQ uses a hybrid approach to overcome this issue. If the cardinality of S isless than a threshold, MAXSETSIZE, then all of the subsets of S are evaluated 3.Otherwise, a greedy algorithm (initially proposed for IND [8]) is used to obtainthe desired subset. The greedy algorithm starts with an empty subset S0 andadds that one element of S to S0 which gives the best split. The process isrepeated until there is no improvement in the splits. This hybrid approach �ndsthe optimal subset if S is small and also performs well for larger subsets.4.4 Tree PruningThe pruning strategy used in SLIQ is based on the principle of Minimum De-scription Length (MDL) [11]. We �rst review brie
y the MDL principle and thenshow its application in decision-tree pruning.The MDL principle states that the best model for encoding data is the onethat minimizes the sum of the cost of describing the data in terms of the modeland the cost of describing the model. If M is a model that encodes the data D,the total cost of the encoding, cost(M;D), is de�ned as:cost(M;D) = cost(D jM) + cost(M)where, cost(D j M) is the cost, in number of bits, of encoding the data given amodel M and cost(M) is the cost of encoding the model M. In the context ofthe decision tree classi�ers, the models are the set of trees obtained by pruningthe initial decision tree T , and the data is the training set S. The objective ofMDL pruning is to �nd the subtree of T that best describes the training set S.Earlier applications of the MDL principle to tree pruning [9][12] showed thatthe resultant trees were \over-pruned", causing a decrease in the classi�cationaccuracy. In [6], an alternative application of MDL was presented that yieldedsmall trees without sacri�cing accuracy. However, the pruning algorithm in [6]was limited; it either pruned all or none of the children of a node in the decisiontree. We present a new algorithm that is able to prune a subset of the childrenat each node and thus subsumes the previous algorithm.There are two components of the pruning algorithm: the encoding schemethat determines the cost of encoding the data and the model, and the algorithmused to compare various subtrees of T .3 We use a default MAXSETSIZE of 10, since 210 subsets can be evaluated fairlyquickly.

4.4.1 Data Encoding The cost of encoding a training set S by a decision treeT is de�ned as the sum of all classi�cation errors. A classi�cation of an exampleis an error if the classi�cation produced by T is not the same as the original classlabel of the example. This count of misclassi�cation errors is collected duringthe tree building phase. So, the data encoding step is inexpensive.4.4.2 Model Encoding The encoding scheme for the model has to provide forthe cost of describing the tree and the costs of describing the tests used in thetree at each internal node.{ Encoding the Tree: Given a decision tree, a node in the decision tree canbe an internal node with one or two children, or a leaf node. The number ofbits required to encode the tree depends on the permissible tree structures.We explore three possible ways of encoding the tree:1. Code1: A node is allowed either 0 or two children. Since there are onlytwo possibilities, it takes only one bit to encode each node.2. Code2: Each node can have no children, a left child, a right child, orboth children. Therefore, 2 bits are needed to encode the four possiblevalues of each node.3. Code3: Only internal nodes are examined. So each node can have a leftchild, a right child, or both children. This requires log(3) bits{ Encoding the Splits: The cost of encoding the splits depends on the typeof attribute tested for the split:1. Numeric Attributes: If the split is of the formA � v where A is a numericattribute and v is a real-valued number, the cost of encoding this testis simply the overhead of encoding v, say P. Although the value of Pshould optimally be determined independently for each such test in thedecision tree, we assume a constant value of 1 throughout the tree. Thevalue of 1 was empirically determined.2. Categorical Attributes: For tests of the form A 2 S, where A is a cate-gorical attribute and S is a subset of the possible values of A, the costis calculated in a two-step process. First, we count the number of suchtests used in the tree, nAi , for each categorical attribute Ai. Then thecost of the test is calculated as lnnAi .From now on, Ltest denotes the cost of encoding any test at an internal node.4.4.3 Pruning Algorithms The MDL pruning evaluates the code length ateach decision tree node to determine whether to convert the node into a leaf,prune the left or the right child, or leave the node intact. For each of the aboveoptions, the code length C(n) for a node n is calculated as follows:Cleaf (t) = L(t) + Errorst; if t is a leaf (1)Cboth(t) = L(t) + Ltest +C(t1) +C(t2); if t has both children (2)Cleft(t) = L(t) + Ltest +C(t1) + C 0(t2); if t has only t1 as a child (3)Cright(t) = L(t) + Ltest +C 0(t1) + C(t2); if t has only t2 as a child (4)

Except for C 0(ti), all the other quantities are self-explanatory. In the case ofpartial pruning when either t1 or t2 is pruned, the examples that fall into thepruned branch are encoded using the statistics at the parent node. C 0(ti) repre-sents the cost of encoding the children's examples using the parent's statistics.We consider three pruning strategies:1. Full: This strategy, �rst presented in [6], considers only options (1) and(2). If Cleaf (t) is smaller than Cboth(t) for a node t then both the childrenare pruned and the node is converted into a leaf. This approach codes thedecision tree using only one bit (method Code1).2. Partial: The partial pruning strategy chooses amongst all four options. Eachnode is converted into the option with the shortest code length. This ap-proach uses the second method for coding trees, Code2, which requires 2bits for each node.3. Hybrid: The hybrid method prunes the tree in two phases. It �rst uses theFull method to get a smaller tree and then considers only options (2), (3)and (4) to further prune the tree.5 Performance ResultsThis section presents a detailed performance evaluation of SLIQ. We �rst discussthe metrics used in the evaluation and then describe the experimental method-ology. This is followed by a comparison of SLIQ with other tree classi�cationmethods and the result of experiments showing SLIQ's scalability.5.1 MetricsThe primary metric for evaluating classi�er performance is classi�cation accu-racy { the percentage of test samples that are correctly classi�ed. We also presentthe classi�cation time, and the size of the decision tree as secondary metrics. Theideal goal for a classi�er is to produce compact, accurate trees in a short time.5.2 Experimental SetupThe performance evaluation of SLIQ was divided into two parts. The �rst partcompares SLIQ with the classi�ers provided with the IND classi�er package [8].The IND package implements two of the most popular decision tree classi�ers:CART [4] and C4 (a predecessor of C4.5 [10]). These implementations are hence-forth referred to as IND-Cart and IND-C4. Since the IND classi�ers handle onlydatasets that �t in memory, the comparison used datasets from the STATLOGclassi�cation benchmark [7]. Table 1 summarizes the important parameters ofthis benchmark.The second part of the performance evaluation examines SLIQ's performanceon disk-resident data. In the absence of a benchmark with large classi�cationdatasets, we used the evaluation methodology and synthetic databases proposedin [1]. Each tuple in these databases has nine attributes. Ten classi�cation func-tions were used in [1] to produce data distributions of varying complexities. In

Dataset Domain #Attributes #Classes #ExamplesAustralian Credit Analysis 14 2 690Diabetes Disease diagnosis 8 2 768DNA DNA Sequencing 180 3 3186Letter Handwriting Recognition 16 26 20000Satimage Landusage Images 36 6 6435Segment Image Segmentation 19 7 2310Shuttle Space Shuttle Radiation 9 7 57000Vehicle Vehicle Identi�cation 18 4 846Table 1. STATLOG Benchmark Datasetsthis paper, we use the functions which were the hardest to characterize and ledto the highest classi�cation errors - functions 5 and 10. All experiments wereperformed on an IBM RS/6000 250 workstation with a bu�er pool of 64 MBand executing the AIX 3.2.5 OS.5.3 MDL PruningSection 4.4 presented the partial and hybridMDL-based pruning algorithms thatcan remove a subset of the children at any decision tree node. The �rst exper-iment compares the performance of these algorithms to the full pruning algo-rithm. Table 2 shows the classi�cation accuracy of the di�erent algorithms whileTable 3 shows the sizes of the �nal decision tree. The execution times of thethree algorithms nearly the same and have therefore not been shown.Dataset full partial hybridAustralian 84.9 85.1 84.9Diabetes 75.8 74.9 75.4DNA 92.1 91.9 92.1Letter 84.6 81.7 84.6Satimage 86.3 85.3 86.3Segment 94.6 94.1 94.6Shuttle 99.9 99.9 99.9Vehicle 70.3 68.7 70.3Table 2. Classi�cation Accuracy Dataset full partial hybridAustralian 14.6 9.6 10.6Diabetes 35.2 11 21.2DNA 55.0 45.0 45.0Letter 1141.0 729.0 879.0Satimage 159.0 91.0 133.0Segment 18.6 15.2 16.2Shuttle 29 27 27Vehicle 68.3 42.6 49.4Table 3. Decision Tree SizeThe tables show that compared to full pruning, the partial pruning leads tomuch smaller trees but at the cost of lower classi�cation accuracy. This impliesthat the partial MDL pruning is \over-aggressive". Hybrid pruning, on the otherhand, achieves the same accuracy as full pruning, and leads to decision treesthat are, on the average, 22% smaller. Hybrid pruning is therefore the preferredapproach, and is used for the rest of the experiments in this paper.5.4 Small DatasetsThe next experiment compares the performance of SLIQ with IND-Cart andIND-C4. Table 4 shows the classi�cation accuracy of each of the algorithm onthe STATLOG benchmark. The results show that all the three classi�ers achieve

similar accuracy. The largest di�erence is only 5.3% (Diabetes). However, Table 5shows that there is a signi�cant di�erence in the sizes of the decision treesproduced by the classi�ers. IND-C4 produces the largest decision trees for all thedatasets. The trees produced by IND-Cart are 2 (Segment) to 16.4 (Australian)times smaller. SLIQ also produces trees that are comparable in size to IND-Cartand 2.1 (Shuttle) to 8.5 (Diabetes) times smaller than IND-C4.Dataset IND-Cart IND-C4 SLIQAustralian 85.3 84.4 84.9Diabetes 74.6 70.1 75.4DNA 92.2 92.5 92.1Letter 84.7 86.8 84.6Satimage 85.3 85.2 86.3Segment 94.9 95.9 94.6Shuttle 99.9 99.9 99.9Vehicle 68.8 71.1 70.3Table 4. Classi�cation Accuracy Dataset IND-Cart IND-C4 SLIQAustralian 5.2 85 10.6Diabetes 11.5 179.7 21.2DNA 35.0 171.0 45.0Letter 1199.5 3241.3 879.0Satimage 90.0 563.0 133.0Segment 52.0 102.0 16.2Shuttle 27 57 27Vehicle 50.1 249.0 49.4Table 5. Pruned-Tree SizeDataset IND-Cart IND-C4 SLIQAustralian 2.1 1.5 7.1Diabetes 2.5 1.4 1.8DNA 33.4 9.21 19.3Letter 251.3 53.08 39.0Satimage 224.7 37.06 16.5Segment 30.2 9.7 5.2Shuttle 460 80 33Vehicle 7.62 2.7 1.8Table 6. Execution TimesThe �nal criterion for comparing the pruning algorithms is the executiontimes of the algorithms.Table 6 shows that IND-Cart, which uses cross-validationfor pruning, has the largest execution time. The other two algorithms grow asingle decision tree, and therefore are nearly an order of magnitude faster incomparison. SLIQ is faster than IND-C4, except for the Australian, Diabetes,and DNA data. The Australian and Diabetes data are very small and, there-fore, the full potential of pre-sorting and breadth-�rst growth cannot be fullyexploited by SLIQ. The DNA data consists only of categorical attributes, andhence there are no sorting costs that SLIQ can reduce.In summary, this set of experiments has shown that IND-Cart achieves goodaccuracy and small trees. However, the algorithm is nearly an order of magnitudeslower than the other algorithms. IND-C4 is also accurate and has fast executiontimes, but leads to large decision trees. SLIQ, on the other hand, does notsu�er from any of these drawbacks. It produces accurate decision trees that aresigni�cantly smaller than the trees produced using IND-C4. At the same time,SLIQ executes nearly an order of magnitude faster than IND-Cart.

0 2 4 6 8 10
Number of Examples (in millions)

0

200

400

600

800

1000

1200

1400

1600

C
la

ss
ifi

ca
tio

n
T

im
e

(m
in

ut
es

)

Function 5
Function 10

0 100 200 300 400
Number of Attributes

0

100

200

300

400

500

600

700

C
la

ss
ifi

ca
tio

n
T

im
e

(m
in

ut
es

)

Function 5
Function 10

Fig. 8. SLIQ Scalability: #Examples Fig. 9. SLIQ Scalability: #Attributes5.5 ScalabilityThe last set of experiments showed that SLIQ achieves good performance onmemory-resident data. This section examines the scalability of SLIQ along twodimensions: the number of training examples, and the number of attributes inthe data. Synthetic databases (Section 5.2) were used for these experiments.Scalability on number of training examples Figure 8 shows the perfor-mance of SLIQ as the number of training examples is increased from 100,000 to10 million. This corresponds to an increase in total database size from 4MB to400MB.The results show that SLIQ achieves near-linear execution times on disk-resident data. This is because the total classi�cation time is dominated by I/Ocosts. Recall that SLIQ makes at most two complete passes over the data foreach level of the decision tree. Since I/O costs are directly proportional to thesize of the data, the total classi�cation time also becomes a near-linear functionof data size. The two functions show di�erent slopes because the size of the treeand hence the number of passes made over the data is function-dependent. Totallinearity is not achieved because of two reasons. First, the pre-sorting time isnon-linear in the size of the data. Second, classifying larger data sets sometimesleads to larger decision trees which requires extra passes over the data.Scalability on number of attributes The next experiment studies the per-formance of SLIQ as the number of attributes increases. Since the original syn-thetic databases have only 9 attributes, extra attributes were created by addingrandomly generated values to each example. Note that the addition of these at-tributes does not substantially change the �nal decision tree produced becausethe extra attributes are not used by SLIQ anyway. The additional attributessimply increase the classi�cation time because of the need to examine additionalattributes at each level of the decision tree. The number of training exampleswas �xed at 100,000 for this experiment. The number of attributes was increased

from 9 to 400, which represents an increase in the database size from 4MB to160MB. Figure 9 shows the performance for functions 5 and 10. There is a dis-continuity at 100 attributes, when the database size is just over 40 MB and theattribute lists (80 MB) do not �t in memory. Recall that the bu�er pool size was�xed at 64 MB of memory for all the experiments4. For disk-resident data, theclassi�cation time increases linearly, again due to the domination of I/O costs.6 ConclusionsClassi�cation is an important problem in data mining. Although classi�cationhas been studied extensively in the past, the various techniques proposed for clas-si�cation do not scale well for large data sets. We presented a new decision-treeclassi�er, called SLIQ, which is designed speci�cally for scalability. SLIQ uses thenovel techniques of pre-sorting, breadth �rst growth, and MDL-based pruning.An empirical performance evaluation shows that compared to other classi�ers,SLIQ achieves comparable or better classi�cation accuracy but produces smalldecision trees and and has small execution times. We also demonstrated thatSLIQ achieves good scalability and performs well for datasets with a large num-ber of examples and attributes.References1. R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance per-spective. IEEE Trans. on Knowledge and Data Engineering, 5(6), Dec. 1993.2. J. Catlett. Megainduction: Machine Learning on Very Large Databases. PhD the-sis, University of Sydney, 1991.3. P. K. Chan and S. J. Stolfo. Meta-learning for multistrategy and parallel learning.In Proc. Second Intl. Workshop on Multistrategy Learning, pages 150{165, 1993.4. L. Breiman et. al. Classi�cation and Regression Trees. Wadsworth, Belmont, 1984.5. R. Agrawal et. al. An interval classi�er for database mining applications. In Proc.of the VLDB Conf., Vancouver, British Columbia, Canada, August 1992.6. M. Mehta, J. Rissanen, and R. Agrawal. MDL-based decision tree pruning. InInt'l Conf. on Knowledge Discovery in Databases and Data Mining (KDD-95),Montreal, Canada, Aug. 1995.7. D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural andStatistical Classi�cation. Ellis Horwood, 1994.8. NASA Ames Res. Ctr. Intro. to IND Version 2.1, GA23-2475-02 edition, 1992.9. J. R. Quinlan and R. L. Rivest. Inferring decision trees using minimum descriptionlength principle. Information and Computation, 1989.10. J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufman, 1993.11. J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scienti�c Publ.Co., 1989.12. C. Wallace and J. Patrick. Coding decision trees. Machine Learning, 11:7{22,1993.13. S. M. Weiss and C. A. Kulikowski. Computer Systems that Learn: Classi�cationand Prediction Methods from Statistics, Neural Nets, Machine Learning, and Ex-pert Systems. Morgan Kaufman, 1991.4 A similar discontinuity also occurs in the previous experiment at 800K tuples.

