
PEM Fuel Cell Stack Development and System Optimization

Zuomin Dong, Professor Department of Mechanical Engineering University of Victoria

PEM Fuel Cell and Stack

PEM Fuel Cell


- History of Development
 - GE (Gemini spacecraft, 1959-1982)
 - > UTC-Hamilton Standard and Siemens AG (for the airindependent submarine, mid-1980s)
 - Ballard Power System Ltd. (1983, 1990s, ...)
 - Many Others
- Core Technology
 - MEA (Membrane Electrode Assembly)
 - Stack
- Key Technical Problems of Stack/System Design
 - Heat Management
 - Water Management
 - Costs

Proof of Concept Fuel Cell E-Vehicles

Automotive Companies and Transit Authorities Using Ballard Fuel Cells

GM	BC Transit	Honda
Ford	Chicago Transit	Nissan
DaimlerChrysler	Volkswagen	Volvo
<image/> <image/> <image/> <image/>		

From other Manufacturers

PEM Fuel Cell Research at University of Victoria

 Next Generation Fuel Cells for Transportation (NGFT) (1994~1999)

- Carried out in the Institute for Integrated Energy Systems

- Jointly supported through a Collaborative Research Grant of 3.4 M by Natural Science and Engineering Research Council (NSERC) of Canada, British Gas Canada and Ballard Power Systems Ltd.
- Research on Fuel Cell Powered Electrical Bicycles (2000 ~ ...)
- Etc.

NGFT Fuel Cell Research

Research Groups:

- NGFT program
- tubular-cell stack development
- radiator stack development; low-cost fuel cell plate manufacturing; and fuel cell system design and optimization
- new fuel cell membrane development
- fuel cell modeling
- Outcome:
 - extensive new intellectual properties, transferred to Ballard
 - a large number of students and professionals who now play active roles in the fuel cell industry
 - a modern fuel cell research laboratory

Research on Fuel Cell Powered Electrical Bicycles

To be carried out as a collaborative research program

- Palcan Fuel Cell Ltd.
- Innovation Center, National Research Council (NRC) of Canada
- University of Victoria
- To focus on the development of
 - stack and system modeling, design and optimization tools
 - testing of fuel cell powered electrical bicycles and scooters

PEM Fuel Cell System Modeling

Types of Model

- Performance model
- Cost model
- Parametric solid models

Modeled Subjects

- Fuel cell
- Fuel cell stack
- Ancillary devices
- Fuel cell system

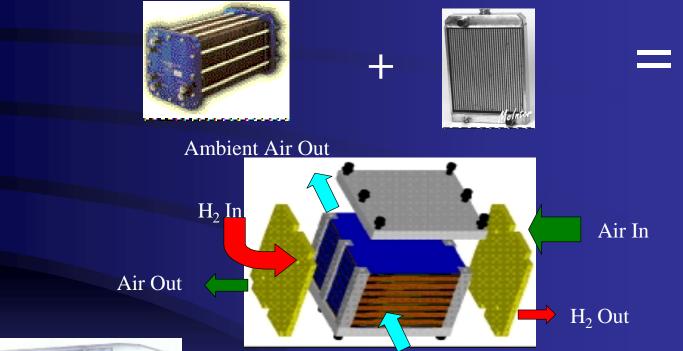
Functions

- Identifying technology/cost challenges
- Component design optimization
- Integrated concurrent engineering design and system optimization

Importance of Product Design

- Direct cost of design in product development: 5%
- Influence of design to the entire product cost: **70%**

Quantitative Concurrent Engineering Design Using Virtual Prototyping-based Design Optimization



A Novel Transportation PEM Fuel Cell Stack Design

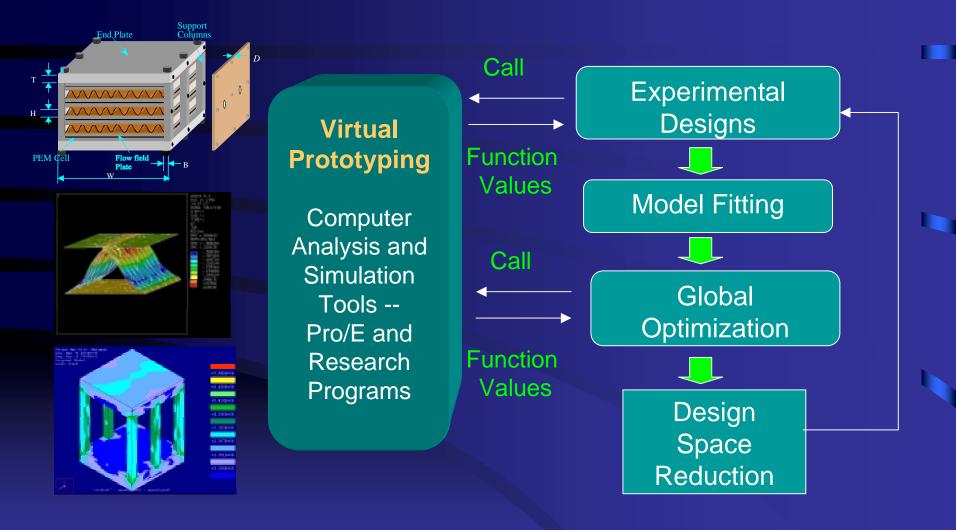
Tri-stream, External-manifolding, Radiator Stack (TERS)

Ambient Air In

Research Issues

- Virtual Prototyping Using Pro/ENGINEER
- Validation of Computer Modeling and Analysis Results
- Development of A Software Tool for Virtualprototyping Based Design Optimization
- Concurrent Engineering Design through Multiple Objective, Global Optimization

Virtual Prototyping-based Design Optimization


- Virtual Prototype Construction
 - a parametric CAD model using Pro/ENGINEER

Virtual Prototype Testing

- built-in finite element analysis module for structure integrity, heat transfer capability and dynamics stability assessments
- manufacturing planning module for production cost and manufacturability estimation; and
- dedicated external software modules for measuring specific functional performance of the design.
- Solution Method
 - Adaptive Response Surface Method (ARSM)

Virtual Prototyping-based Design Optimization Adaptive Response Surface Method (ARSM)

Optimal Design of the Key Component of TERS — Multi-functional Panels

Design Considerations

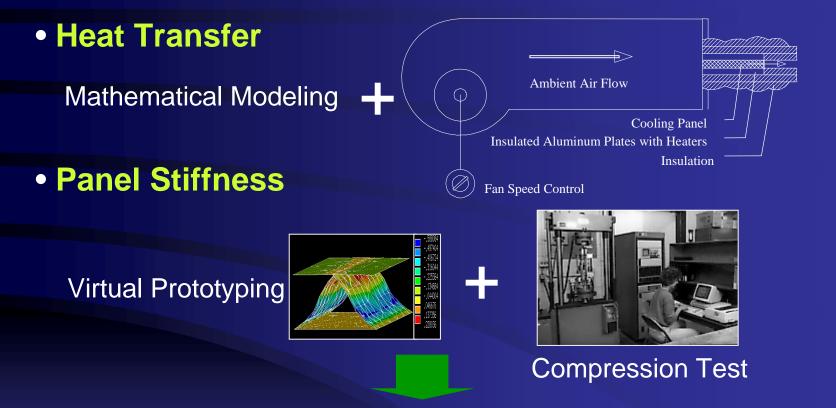
- Heat transfer
- Compensation of thermal and hydro expansion
- Electrical conductivity

Design Variables

Fin Wavelength, w, thickness, t, panel height, h, surface texture, material, and fin shape

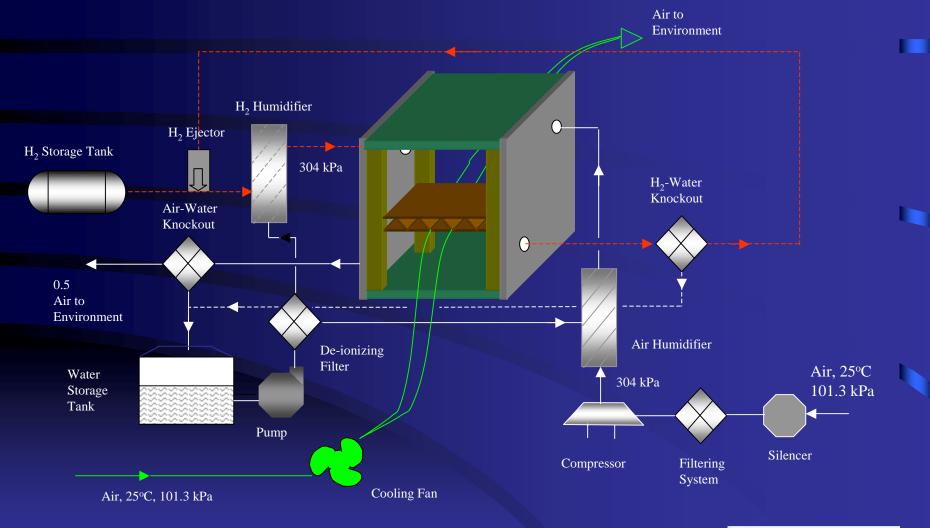
Formulation of Design Problem

Objectives


Minimize | Panel Stiffness - Ideal Stiffness | Maximize Outlet Temperature

Constraints

Maximum Air Flow Rate < Constant 1 Panel Deformation Percent Difference < 10% Outlet Temperature > 320 K Conductivity > Constant 2 Parameter Bounds


Validation of the Computer Model (Multi-functional Panels)

ARSM for Integration and Optimization

Modeling of the TERS Fuel Cell System

Optimization of the TERS Fuel Cell System

Design Parameters:

- five geometric parameters
- one operational parameter
- one system configuration parameter

Design Objectives:

AirSt	1.3 ~ 2.5	
StackW	100 ~ 240 mm	
ColW	10 ~ 30 mm	
NCell	10 ~ 60 mm (Layout a) 10 ~ 130 mm (Layout b)	
FinH	4 ~ 15 mm	

cost, power densities, efficiency and net power

Design Constraints:

structure integrity and system size

Integrated Concurrent Engineering Design:

 $\min_{X} f(X) = \min_{X} \left\{ \lambda_{c} \sum f_{c}(X) - \lambda_{p} \sum f_{p}(X) \right\}$

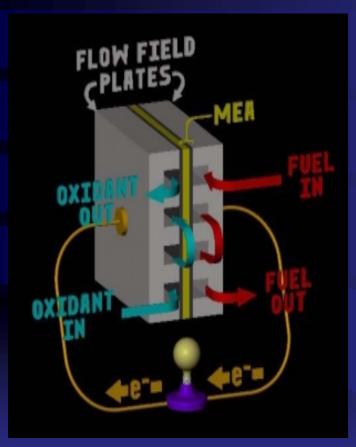
Results of Design Optimization

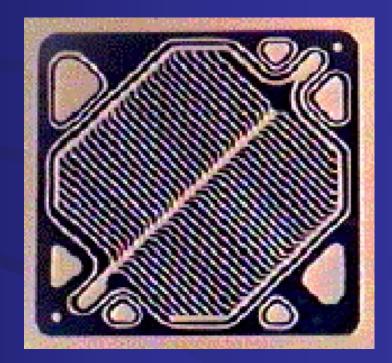
Multiple Functional Panel Design

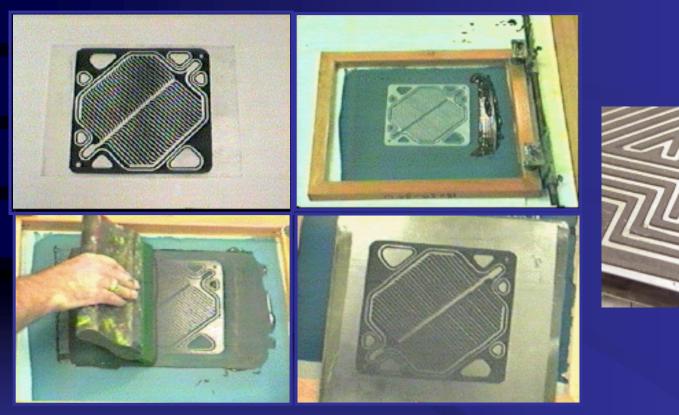
- Panel thickness, t, dominants the stiffness; panel height, h, dominants the heat transfer capability;
- Optimum at: h=4, w=9, t=0.012 (mm) with an ideal panel deformation of 0.0341 mm under loads.

TERS Fuel Cell System Design

- Design considerations: cost, performance (net power, efficiency, power densities), structure integrity, and space constraints.
- Increased system power density by 43%,
- Reduced system costs by 16%, and
- Obtained the global optimum of system design in hours.

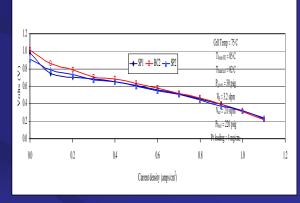



Screen Printing Fuel and Oxidant Delivery Plate Manufacturing Method


Fuel Cell Fuel and Oxidant Delivery Plate

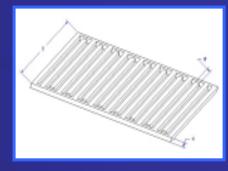
Screen Printing Fuel and Oxidant Delivery Plate Manufacturing Method

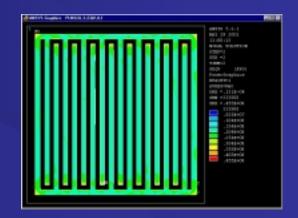
Major Research Targets


- Process feasibility low cost manufacturing
 - build up the height and complex shape of flow channel walls
 - stencil material and automated stencil production process
 - tolerance control and process details
 - prototype, batch and mass production at (\$2~5/plate)
- Plate stability and zero contamination
 - corrosive, humid & heated working conditions
 - ink base and ink ingredients (poster ink, conductive polymer, castable graphite, composite material, etc.)
 - printing process and post processing
- Eliminating/reducing contact resistance
 - wet assembly, laminated copper-graphite foils

Screen Printing Fuel and Oxidant Delivery Plate Manufacturing Method

Single Cell Test

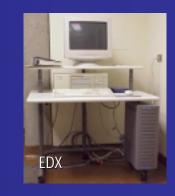

Rapid Prototype Development of Fuel Cell Gas Delivery Plate Using Virtual Prototyping, Optimization and Screen Printing

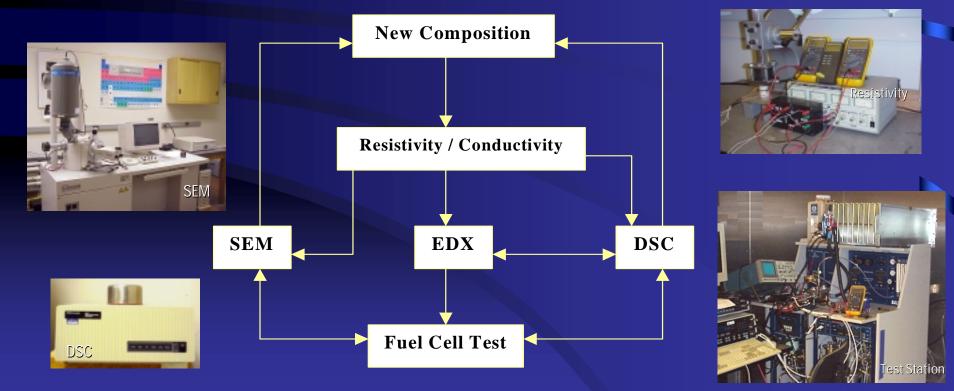

Plate Structure Design & Optimization

- design of plate geometry flow field layout and plate geometry (CFD & FEA) (30% more oxygen)
- design of composite material property and composition (FEA, etc.)
- testing of composite materials

Rapid Prototyping

- stencil making
- plate making
- fuel cell testing (23% more power)





Testing of New Composite Materials

- Resistivity
- SEM (Scanning Electronic Microscope) (microstructure)
- EDX (Energy Dispersive X-ray) (spectrum of active ions)
- DSC (Differential Scanning Calorimeter) (vapor evaporation)
- Fuel Cell Test (performance)

PEM Fuel Cell Research of Our Group at University of Victoria

- Next Generation Fuel Cells for Transportation (94~99)
 - Part of the IESVic CRD Grant by NSERC, British Gas Canada and Ballard Power Systems Ltd.
 - Four Related Areas:

Radiator Stack Design; Low Cost, Rapid Prototype Development of Fuel Cell Plates; Fuel Cell Stack and System Modeling; and Concurrent Engineering Design through Global Optimization.

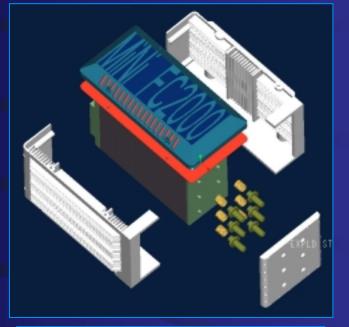
• Fuel Cell Powered Electrical Bicycles (2000 ~ present)

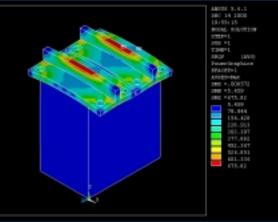
- Mathematical Modeling of the Fuel Cell Systems for Powering Electrical Bicycles and Scooters
- Testing Methods and Procedures for Electrical Bicycles
- Virtual Prototyping of Fuel Cell E-Bicycles and E-Scooters

Concept Fuel Cell Powered Mountain Bicycle and Control System

- A concept fuel cell powered bicycle built on a Rocky Mountain Bicycles RM6 full suspension bicycle.
- Due to the front motorized drive, the power system can be easily fitted to any bicycle.

Fuel Cell and E-Bicycle Testing Facilities






Concept Fuel Cell Stack and E-Bicycle Design, Modeling and Analysis

