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ABSTRACT

This paper presents a method for determining smooth and
time-optimal path-constrained trajectories for robotic ma-
nipulators. The desired smoothness of the trajectory is
imposed through limits on the actuator jerks. The third
derivative of the path parameter with respect to time, the
pseudo-jerk, is the controlled input. The limits on the ac-
tuator torques translate into state-dependent limits on the
pseudo-acceleration. The time-optimal control objective is
cast as an optimization problem by using cubic splines to
parameterize the state space trajectory. The optimization
problem is solved using the 
exible tolerance method.

INTRODUCTION

The need for increased productivity in path-following in-
dustrial robotic applications has been addressed in the
literature by determining path-constrained time-optimal
motions (PCTOM) while accounting for actuator torque
limits; see (Bobrow, 1985)[1], (Pfei�er, 1987)[9], (Shiller,
1992)[13]. In these formulations, the joint actuator torques
are the controlled inputs and the open loop control schemes
result in bang-bang or bang-singular-bang controls (Chen,
1989)[2].

PCTOM trajectories compute the maximum velocity
achievable at the robot tip while still following the pre-

scribed path. However, implementation of PCTOM in
physical manipulators has drawbacks, such as joint oscilla-
tions due to �nite joint sti�ness and overshoot of the nom-
inal torque limits due to unmodelled actuator dynamics.
The resultant extra strain on the robot actuators could
cause them to fail frequently (Li, 1997)[6], reducing the
productivity of the entire workcell.

At the trajectory planning level, a number of di�erent
techniques have been devised to address the problem of
discontinuous actuator torques. A modi�ed cost function,
such as time-joint torques (Pfei�er, 1987)[9] or time-square
of joint torques (Shiller, 1994)[11], smoothes the controls
and helps to improve the tracking accuracy, at the expense
of motion time.

Another way of smoothing the controls is to parameter-
ize the path by using functions that are at least C2 contin-
uous. Cubic splines used for path parameterization with
time as the cost function (Lin, 1983)[7] result in trajec-
tories that have continuous joint accelerations. However,
the limits on the joint variables are very conservative, since
they need be constant over the entire space and, therefore,
are chosen as the lowest maximum. Incorporating the ac-
tuator dynamics in this problem formulation (Tarkiainen,
1993)[14] transforms the actuator voltages into the limited
controlled inputs. The optimal trajectory is bang-bang in
the new controls and the actuator torques are no longer
limited. Also, the case of singular controls is not consid-
ered since they can be avoided by an appropriate selection



of the path (Shiller, 1992)[13] or by convexifying the set of
admissible controls (Shiller, 1994)[10].
In this paper, a method is presented for determining

time-optimal trajectories subject to actuator torque and
jerk limits. The resulting trajectories will be called smooth
path-constrained time-optimal motions (SPCTOM) to dis-
tinguish them from the path-constrained time-optimal mo-
tions (PCTOM), which do not consider jerk limits.
The actuator jerk limits are imposed in order to plan

feasible optimal motions for industrial applications, which,
more and more, use newer light direct drive manipula-
tors. Moreover, in industrial applications, an accurate ro-
bot model is likely not readily available and the controller
strategy cannot be modi�ed by the user. In such cases,
unlimited jerks can cause severe vibrations in the arm pos-
sibly leads to the failure of the actuators themselves. The
SPCTOM trajectories �lter the jerks from the trajectory
at the planning level, thus leaving more authority to the
tracking controller to compensate for disturbances. Po-
tentially, they could also compensate for larger modelling
errors.
Motion planning problems such as obstacle avoidance

are beyond the scope of this paper, since the path is as-
sumed to be preimposed. Path-constrained motions are
speci�c to contour following applications. Typically, they
are also used in point-to-point motion planning in cluttered
environments (Shiller, 1989)[12], when the geometric con-
straints (obstacles, joint limits) are satis�ed by the path
planner and the dynamic constraints are left to the trajec-
tory planner.

PROBLEM FORMULATION

The basic problem

The problem of smooth path-constrained time-optimal mo-
tion (SPCTOM) planning can be stated as follows:

min
_T2


J =

Z tf

0

1dt, (1)

subject to the manipulator dynamics:

M(q)�q+ _qTC(q) _q +G(q) = T, (2)

the boundary conditions:

q(0) = q0 ; q(tf ) = qf ;

_q(0) = _q(tf ) = 0 ; �q(0) = �q(tf ) = 0, (3)

the path constraints:

r = r(s), (4)

the actuator torque limits:

Tmin � T � Tmax, (5)

and the actuator jerk limits:

_Tmin � _T � _Tmax, (6)

where n is the number of degrees of freedom of the manipu-
lator. Furthermore, q 2 Rn is the vector of joint positions,
T 2 Rn is the vector of actuator torques, _T 2 Rn is the
vector of actuator jerks, M(q) 2 Rn�n is the inertia ma-
trix of the manipulator, C(q) 2 Rn�n�n is a third order
tensor representing the coe�cients of the centrifugal and
Coriolis forces, G(q) 2 Rn is the vector of gravity terms,
and r 2 R3 is a C1 continuous curve parametrized by s,
which may be, for example, the arc length. To simplify
the dynamics, viscous and static friction terms have been
neglected.

In the above formulation, the actuator jerks represent
the bounded controls. However, these controls would later
have to be integrated in order to derive the actual sys-
tem inputs in terms of desired actuator torques. Since the
Lagrangian form of the robot dynamics incorporates only
the actuator torques, the third order dynamics is required.
Di�erentiation of (2) with respect to time results in:

M(q)
...
q + _M(q)�q+ �qTC(q) _q + _qT _C(q) _q +

_qTC(q)�q + _G(q) = _T. (7)

Equation (7) is taken as the dynamics of the system,
with _� representing the n-dimensional bounded controls.

System dynamics for path-constrained motions

The dynamic system described by Equation (7) has 3n de-
grees of freedom. However, the path constraints (4) para-
meterize the tip position by a single parameter s and reduce
the order of the system to 3. By expressing the joint po-
sitions, velocities, accelerations, and jerks as functions of
the path parameter s, the actuator torque and jerk limits
are transformed into limits on �s, the pseudo-acceleration,
and limits on the

...
s , the pseudo-jerk, respectively:

Tmin � A(s)�s+ B(s) _s2 + C(s) � Tmax (8)

_Tmin � a(s)
...
s + b(s) _s�s+ c(s) _s3 + d(s) _s � _Tmax, (9)
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Figure 2: SWITCHING POINTS OF THE PCTOM
(DOTTED LINE) AND A SAMPLE SPLINED TRAJEC-
TORY (SOLID LINE). THE DASH-DOT LINE IS THE
VELOCITY LIMIT CURVE WHEN TORQUE LIMITS
ARE CONSIDERED.

over the curve while not violating actuator torque and/or
actuator jerk limits.
In view of the above, the optimal motion is determined

by an optimization of a base trajectory. A set of cubic
splines with preselected knot-point locations are chosen as
the base trajectory for the optimization. Cubic polynomi-
als have been selected to approximate the SPCTOM be-
cause they are the lowest degree polynomials that result in
a smooth curve, i.e., continuous and di�erentiable every-
where. The locations of the knots along the path have
been chosen to be the same as the locations of the switch-
ing points of the PCTOM (Figure 2).
The variables of the optimization are the end-e�ector

pseudo-velocities at the preselected knot-points along the
path and the slopes of the trajectory in the s- _s phase plane
at the path end-points. Thus, the vector of optimization
variables, x, is de�ned as:

x =

 �
d _s
ds

�
0�

d _s
ds

�
m;0

_s1
_sm;1

� � �
_sp
_sm;p

�
d _s
ds

�
f�

d _s
ds

�
m;f

!T

, (25)

where the values with the index m correspond to the limit-
ing PCTOM (the dotted line in Figure 2), while the other
values correspond to the splined trajectory (the solid line).
These variables are normalized since the end slopes vary
over a much wider range than the pseudo-velocities.
The optimal trajectory results from splining cubic poly-

nomials in the s- _s phase plane through the optimal x knots.
The trajectory must be within actuator torque and actu-
ator jerk limits and take minimum time. The control and

Figure 3: THE ELBOW MANIPULATOR.

state inequality constraints in Equations (20), (21), (22),
and (23) thus become:

g4(i�1)+1(x) = 1�max
_s(s)

Ti
Tmax;i

, (26)

g4(i�1)+2(x) = 1�max
_s(s)

Ti
Tmin;i

, (27)

g4(i�1)+3(x) = 1�max
_s(s)

_Ti
_Tmax;i

, (28)

g4(i�1)+4(x) = 1�max
_s(s)

_Ti
_Tmin;i

, (29)

for i = 1 : : : n. By this de�nition, whenever any of the actu-
ator torques and/or jerks exceeds its limits, the respective
constraint becomes negative.
As formulated, the optimization is solved herein us-

ing the 
exible tolerance method (FTM) (Himmelblau,
1989)[4]. There are two reasons for choosing this method.
First, the derivatives of the constraints and the cost func-
tion, i.e., motion time, are not available. Second, as de-
scribed previously, the solution sought is expected to be
on the boundary of the admissible region; therefore it is
desirable to use information about points on both sides of
the limiting surfaces in order to converge to the surface.
The details of the FTM are discussed in the Appendix .

EXAMPLE

The method for determining optimal SPCTOM has been
implemented in MATLAB and simulations are performed
for the elbow manipulator presented schematically in Fig-
ure 3. The robot parameters are taken from (Pfei�er,
1987)[9]. They are given in Table 1, where C.O.M. means



the location of the center of mass of link i with respect to
joint i.

Table 1: ROBOT PARAMETERS.

Link [m] C.O.M. [m] Mass [kg]
l1 = 0 lc1 = 0:05 m1 = 0

l2 = 0:75 lc2 = 0:2 m2 = 6:6
l3 = 0:75 lc3 = 0:15 m3 = 4:2

Ix[kgm
2] Iy[kgm

2] Iz [kgm
2]

Ix1 = 0 Iy1 = 5 Iz1 = 0
Ix2 = 0:1 Iy2 = :6 Iz2 = 0:6
Ix3 = 0:02 Iy3 = :2 Iz3 = 0:3

Table 2: ACTUATOR PARAMETERS.

T [Nm] _T1[Nm=s] _T2[Nm=s] _T3[Nm=s]

T1 = 140 _T11 = 5000 _T12 = 500 _T13 = 140

T2 = 140 _T21 = 2000 _T22 = 500 _T23 = 140

T3 = 50 _T31 = 1000 _T32 = 100 _T33 = 50

The actuator torque limits are the same for all the three
examples given in this paper, while the limits on the jerks
are di�erent, as successively shown in Table 2.

The resulting optimal trajectories for the di�erent lim-
its on the actuator jerks are shown in Figures 4(a), 5(a)
and 6(a), respectively, by solid lines. The dashed lines rep-
resent the time-optimal trajectory considering only torque
limits (PCTOM). The dotted lines are the smooth mo-
tion velocity limit curves (SMVLC), i.e., the velocity limit
curves determined considering both torque and jerk lim-
its. The corresponding actuator torques and jerks are also
plotted in these �gures.

While the PCTOM takes 1:72 seconds, the SPCTOM
takes 1:91 seconds in the �rst example. Here, the limits on
the actuator jerks were very high and the trajectory is de-
termined by the limits on the actuator torques. Although
one would expect both trajectories to yield same motion
times, there are two reasons for the increase in motion time
for SPCTOM : (i) the limited parameterization chosen in
the s � _s phase plane and (ii) the signi�cant decrease in
peak actuator jerks for SPCTOM (solid lines) compared to
PCTOM (dotted lines), as shown in Figure 7.

In examples 2 and 3, the limits on the actuator jerks
predominate, therefore the torque constraints are not ap-
proached. The optimal motion times for these examples
are signi�cantly higher, 2:74 seconds and 3:93 seconds, re-
spectively.
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Figure 7: ACTUATOR JERKS FOR THE SPCTOM IN
EXAMPLE 1 (SOLID LINES) AND PCTOM (DOTTED
LINES).

DISCUSSION

As desired, the optimal trajectories determined through
the proposed method are not bang-bang in the controls.
This is a consequence of the parameterization in the phase
plane, where the trajectory is approximated by splining
cubic polynomials. However, as seen from the �rst example
presented, the chosen parameterization by itself does not
cause a signi�cant increase in the motion time.
The limits on the actuator jerks, on the other hand, af-

fect the motion time substantially. As expected, the more
restrictive the limits on actuator jerks are, the higher the
motion time is. Therefore, these limits should be chosen
based on the characteristics of the joint actuators, such
that a suitable compromise is achieved between the mo-
tion time and the life span of the actuators.

CONCLUSIONS

A method has been presented for determining smooth and
time-optimal path-constrained trajectories for robotic ma-
nipulators. The dynamics of the manipulator together with
limits on the actuator torques and jerks are considered.
The trajectory in the s� _s phase plane is parameterized by
cubic splines and the optimal motion is obtained through
an optimization of a base trajectory.
The limits on the actuator jerks are a simple and direct

way of adjusting the smoothness of the end-e�ector mo-
tion or of each link individually. More than that, they are
actuator dependent and position independent. Thus, they
represent a uniform measure for the trajectory smoothness
over the entire robot workspace. This results in faster tra-
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(a) SPCTOM TRAJECTORY IN THE
s� _s PLANE.
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(b) ACTUATOR TORQUES.
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Figure 4: EXAMPLE 1 (HIGH JERK LIMITS).
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Figure 5: EXAMPLE 2 (MEDIUM JERK LIMITS).
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Figure 6: EXAMPLE 3 (LOW JERK LIMITS).



jectories compared to other smooth time-optimal trajecto-
ries that use global velocity and acceleration limits.

Smooth time-optimal trajectories planned according to
the method proposed herein maintain a measure of time
optimality while achieving a desired degree of smoothness.
Therefore, they are suitable for direct implementation on a
light direct drive manipulator, since they do not excite the
eigenfrequencies of the robot structure. Experimentally,
they have been shown to compensate for large modelling
errors.
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Appendix

In the 
exible tolerance method (FTM) (Himmelblau,
1989)[4], the optimization problem:

Minimize: f(x) x 2 Rn (.1)

Subject to: hi(x) = 0 i = 1; :::;m (.2)

gi(x) � 0 i = m+ 1; :::; p

is solved as the following simpler equivalent problem with
only one constraint:

min: f(x) x 2 Rn (.3)

subject to: �(k) � T (x) � 0.



�(k) is the value of the 
exible tolerance criterion at the kth
step of the optimization and it also serves as a criterion for
the termination of the search. The cost function f(x) and
the equality and inequality constraints in (.3) may be lin-
ear and/or non-linear functions of the variables in x. The
value of the cost function is improved by using information
provided by feasible points, as well as certain nonfeasible
points called near-feasible points. The near-feasibility lim-
its are made more restrictive as the search advances, until
in the limit only feasible points are accepted.
In (.4) below, T (x) is a positive functional of all the

equality and/or inequality constraints of the original prob-
lem and it is used as a measure of the constraint violation,
while � is selected as a positive decreasing function of the
x points in Rn. For the SPCTOM:

T (x) =

(
maxi gi(x) if 9i such that gi(x) � 1

0 otherwise,
(.4)

and:

�(k) = minf�(k�1);�

r+1X
i=1

kx
(k)
i � x

(k)
centrkg (.5)

with � a constant.
The tolerance criterion is used to classify points in Rn.

At the kth step of the optimization, a point x(k) is said to
be:

1. Feasible, if T (x) = 0

2. Near-feasible, if 0 � T (x) � �(k)

3. Nonfeasible, if T (x) < �(k).

A small value of T (x(k)) implies that x(k) is relatively near
to the feasible region, and a large value of T (x(k)) implies
that x(k) is relatively far from the feasible region.
On a transition from x(k) to x(k+1), the move is said

to be feasible if 0 � T (x(k+1)) � �(k), and nonfeasible if
�(k) � T (x(k+1)).
The FTM entails two independent optimizations : an

outer minimization of the cost function f(x) and an inner
minimization of the violation of constraints T (x) when-
ever the minimization of f(x) yields an infeasible point.
The outer optimization of the motion time is implemented
in this paper using the 
exible polyhedron method (FPM)
(Nelder, 1964)[8]. The FPM is a search in n dimensions
where the polyhedron changes shape to match the chang-
ing shape of the surface. In the vicinity of a minimum the
polyhedron shrinks, surrounding the minimum. Replace-
ment of an infeasible point with a feasible or near feasible
one is done through a line search using interval halving.


