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Abstract

This work proposes and demonstrates a strategy for planning smooth path-constrained time-

optimal trajectories for manipulators. Such trajectories are obtained by limiting the actuator jerks

required by the planned motion.

Existing planning strategies incorporate the smoothness requirement either as smoothness of

the actuator torques or as smoothness of the joint trajectories. The smoothness requirement is

desirable for reducing strain on robot actuators while still requiring low cycle times. In this work,

the trajectory smoothness is de�ned in the phase plane and the planning observes the limits on the

actuator jerks.

The solution proposed for determining the optimal trajectories consists of approximating the

time optimal control problem by a nonlinear parameter optimization problem which is solved using

the 
exible tolerance method. It is shown that the approximate solution converges to the time

optimal motion when the actuator jerks become very high.

A number of simulations are performed to demonstrate the proposed strategy. These simulations

show that actuator jerk limits have a negative impact on robot motion time, but they do not give

any indication about robot trajectory feasibility. This aspect is studied through further simulations

and experiments on an industrial robot. The results of this work show that the tracking accuracy

is directly related to the actuator jerk limits. Therefore, it is necessary to impose such limits when

planning feasible optimal trajectories.

Finally, the performance of the smooth time optimal motion is compared to the performance

of both the non-jerk limited optimal trajectory, as well as a smooth quintic trajectory. For similar

actuator jerks and controller e�ort, the smooth path-constrained time-optimal trajectory results in
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a signi�cantly shorter motion time with nearly the same tracking accuracy as a quintic polynomial.

Based on the results in this work, actuator jerk limits are shown to provide an improved method

of achieving a compromise between high tracking accuracy, smooth joint behaviour, and optimal

motion time.
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Chapter 1

Introduction

1.1 Background

The Robotic Industries Association de�nes a robot as \a reprogrammable multi-functional ma-

nipulator designed to move materials, parts, tools, or specialized devices, through variable pro-

grammed motions for the performance of a variety of tasks" [3]. Both mobile robots and �xed

base manipulators conform to this de�nition. In this work, however, the focus is on �xed base

manipulators commonly found in industry, and herein described as \industrial robots".

By the above de�nition, a robot may be decomposed into two parts: (i) a mechanism (namely,

joints and links) together with actuators, capable of performing an in�nite range of motions; and,

(ii) computer algorithms together with a control and a sensing system, capable of planning and

controlling these motions. Since the issues involved in motion control are complex, they are typ-

ically made more tractable by dividing them into motion planning problems and motion tracking

problems.

Motion planning may be done either on-line, while the robot is executing the task, or o�-line,

that is, before the execution starts. On-line planning is often more desirable, since it increases the

robustness of the robot's behaviour in the face of uncertainties and modelling errors. However,

o�-line planning is used when the required planning algorithms are computationally intensive.

Depending on the speci�cation of the task, motion planning entails either planning a trajectory

along a speci�ed path, or, planning both a path and a trajectory along the path. A trajectory is

1



1.1 Background 2

a curve in state space that describes the system evolution in time. The trajectory incorporates

the system dynamics. A path is a curve in Cartesian space (or in joint space) that describes the

spatial evolution of the end-e�ector (or the joints). The path re
ects the geometric constraints on

the task, for example, the joint limits.

Robot motions are speci�ed in two di�erent ways. When the end-e�ector is constrained to

a predetermined path, the motion is called path-constrained. Applications of path-constrained

manipulation include welding, gluing and spraying. Since the path is imposed by the task, only

trajectory planning is addressed.

When only the initial and �nal positions (and velocities) of the end-e�ector are imposed, the

motion is called point-to-point. Pick and place operations are point-to-point manipulations. In

this case both a path and a trajectory must be determined. Path planning is now subsumed by

trajectory planning. However, this global problem is di�cult due to the highly nonlinear and

coupled dynamics of articulated robots. Most solutions are limited to two degree of freedom (dof)

manipulators due to the exponential increase in complexity of the problem with increasing dof.

Such solutions are generally considered only in o�-line planning schemes when obstacles are not a

concern. More often, however, path planning and trajectory planning are treated as independent

problems and addressed separately. For example, this is the case when the trajectory is planned

on-line or when the working environment is cluttered.

Once the trajectory is determined by the motion planner, it is sent to the tracking controller.

This low level controller ensures that the robot's position and velocity match the reference signals.

While many di�erent advanced controllers have been proposed, most often in industrial practice

a simple PID controller is used. Although such a controller does not consider the nonlinear robot

dynamics, at high control loop frequencies it can keep the manipulator reasonably close to a typical

industrial trajectory. This approach usually requires the robot to operate well under its full dynamic

capabilities.

Thus, in the general context of motion planning, the present research is concerned with de-

termining industrially feasible time-optimal trajectories for path-constrained tasks. These are tra-

jectories which allow the robot to move in an optimal manner within the constraints of the robot

actuators and controller capabilities.
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1.2 Time-Optimal Motion

Since any manipulation can be performed in many ways, a desirable choice is to have the

robot execute the motion in an optimal manner according to some relevant criterion. Optimality

criteria for industrial manipulation tasks include: minimum energy consumption [50], [64], [65], [66];

minimum jerk [33], [34], [57]; and minimum e�ort [40]. However, the economic drive for maximum

task productivity is so strong that much more research has been dedicated to time-optimal motions

[5], [11], [14], [24], [26], [31], [38], [45], [54], [55], [56], [58], [59], [60].

Planning minimum time motions for industrial manipulators is a time optimal control (TOC)

problem for a highly nonlinear and coupled multi-degree of freedom dynamic system. Thus, no

explicit closed-form solution may be expected from Optimal Control Theory (OCT) based on the

application of Pontryagin's Maximum Principle (PMP). For nonlinear systems, OCT only provides

necessary conditions for optimality. Hence, only a set of candidate controls can be deduced using

the general theory.

These di�culties stimulated the research in time-optimal motion planning. Di�erent algorithms

have been developed for solving the problem and much research has been concerned with studying

the structure of the solution; see, for example, [5], [11], [12], [23], [41], [60], [61]. This research has

shown that the optimal controls are either of the bang-bang or of the bang-singular-bang type. The

singular controls are not directly characterized by PMP.

The �rst near-time optimal solution was proposed by Kahn and Roth [31] for point-to-point

motions. They linearized the di�erential equations describing the dynamics of the robot, applied a

transformation to decouple the linearized dynamics and then solved the TOC problem analytically.

Hollerbach [29] showed that the coupling terms could not be neglected in the dynamics. That is, a

manipulator is intrinsically nonlinear and coupled, and thus does not behave like a linear system

slightly perturbed by nonlinearities.

Since then, methods for obtaining the time-optimal motion along a speci�ed path have been

reported by Bobrow et al. [5], and Shin and McKay [55]. Both these methods maximize the

velocity of the manipulator along the given path and give the result in terms of a switching curve

in the phase plane. Using essentially the same algorithm, Pfei�er and Johanni [45] and Slotine and

Yang [59] improved the e�ciency of determining the switching points. Shiller and Lu [54] extended
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the method to deal with singular controls.

For point-to-point manipulations, two approaches have been pursued. In the �rst approach, the

TOC problem is solved globally, using either OCT or search techniques. In the former approach,

PMP is applied to the Hamiltonian formulation of the robot dynamics [14], [13], [24], and the

resulting two point boundary value problem (TPBVP) is solved by shooting methods. Alternatively,

joint-space [47] or state-space [19], [26] search techniques are employed. In these methods, the space

between the initial and �nal position (state) is tessellated and the linearized robot dynamics are

used to compute the motion time between the tessellation points. The time-optimal trajectory is

then found by a graph search. Regardless of the approach, the global TOC problem for point-

to-point motions has been demonstrated only for simple two degrees of freedom manipulators in

uncluttered environments.

In the second approach, path planning and trajectory planning are treated separately. The

path is restricted to a class of suitably chosen functions under the assumption that the optimal

path is smooth. The methods devised for determining the optimal path include: a joint space

search technique [46]; a parameter optimization technique [4]; the use of the dynamic properties

of the manipulator [52]. The minimum time trajectory along the path is then determined using

the algorithm in [5]. This disjunction of the global problem greatly simpli�es its solution. This

simpli�cation has been exploited to plan motions for realistic manipulators, with more than two

degrees of freedom [4]. It has also been used in on-line planning schemes [16].

In all the above works, manipulation tasks are planned in a time-optimal fashion. Hence,

all of them require bang-bang or bang-singular-bang actuator torques. Such torques cannot be

achieved by physical robots. Thus, a need arises for smoothing the controls before such minimum

time strategies can be practically implemented. This need has been recognized for more than 15

years [38], [64], and it has been addressed both at the planning level and at the tracking level. At

the tracking level, trajectory preshaping [51] and �ltering of the control signals [37] have been used

to smooth the optimal controls required by the planned minimum time trajectories. At the planning

level, actuator voltages as controls [63] and cost functions including actuator e�ort [8], [37], [50], [66]

have been used to generate trajectories which result in smooth optimal controls. This is done by

taking into account a more complete model of the manipulator dynamics. The resulting trajectory

is then feasible for implementation by existing (non-specialized) industrial robot controllers.
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In this work, smooth time optimal control is achieved through the second approach, namely,

at the planning level. However, rather than require a more rigorous model of the robot (which is

generally unavailable), constraints on the allowable actuator jerks are applied. Again, the objec-

tive is to generate optimal trajectories that are feasible for implementation on existing industrial

manipulators.

1.3 Industrial Motivation

The research in time optimal robot control addresses the industry's demand for increased pro-

ductivity. Whenever the process speed is limited by the robot itself, rather than by the task that

it is performing, minimum time path tracking results in reduced cycle time. Shorter cycle times

can increase productivity and, thus, decrease the cost per operation.

To achieve the goal of time optimal control, both the trajectory planner and the tracking

controller are designed to exploit the full capability of the robot. This ensures minimum execution

time for the task. However, the algorithms, both at the planning and at the tracking level, use

only a simpli�ed model of the manipulator. Link 
exibility, actuator dynamics and joint friction

are usually ignored and the robot dynamic model is considered to be accurately known. These

modeling assumptions are required by the complexity of the motion planning problems. However,

such assumptions are problematic in the implementation of time optimal control to real systems.

If implemented on a physical manipulator with a non-specialized controller, time optimal control

will result in vibrations in the links and strain and wear on the actuators. Premature wear of the

mechanical structure and frequent failures of the actuators can result [37]. Hence, in practical

terms, the implementation of time optimal motion could decrease the return on capital investment

in the robot. Furthermore, the productivity of the entire workcell may be reduced due to the down

time for robot repairs. Such events defeat the purpose of time optimal control.

Thus, from an industrial point of view, the need arises for a more realistic optimal control:

a control that achieves a desirable balance between the minimum task completion time and the

practical limitations of the robot system.
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1.4 Research Objectives

The view adopted herein is that increased productivity, namely shorter time for performing a

task, is important from an economic perspective. Nonetheless, the physical limitations of the robot,

such as link and joint 
exibility, must be acknowledged in an industrial implementation. Therefore,

the general objective herein is to determine feasible optimal trajectories for path-constrained tasks.

The bene�t of such trajectories is that, while being time-optimal, they will also be suited for direct

implementation on a commercial robot using non-specialized industrial controllers.

In this context, the speci�c objectives are: (i) formulation of the TOC problem for path con-

strained tasks such that it includes constraints through which di�erent degrees of trajectory smooth-

ness can be imposed; (ii) development of an algorithm for solving this problem; and, (iii) establishing

that this algorithm results in improved robot performance, as measured by the tracking accuracy.

1.5 Thesis Outline

This chapter introduced robotic motion planning and the time-optimal motion research. In

summary, the practical limitations of minimum time motions led to the industrial motivation of

the present work. The research objectives were presented and an outline of the thesis is given

herein.

Chapter 2 discusses the issues involved in the physical implementation of path-constrained

time-optimal motions (PCTOM). Then, existing methods of addressing these issues are presented.

Finally, a new formulation of the PCTOM planning problem is presented, in which smoothness

requirements on the motion are incorporated as limits on the rate of variation of the actuator

torques.

In Chapter 3, the methodology for the solution of the proposed formulation is described. As

the TOC problem is transformed into an optimization problem, this transformation is justi�ed and

detailed.

Simulations are performed using this optimization and the results are presented and discussed

in Chapter 4.
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An optimal trajectory planned using the algorithm developed in this work and a PCTOM tra-

jectory planned according to the algorithm in [45] are implemented on the SCORBOT ER VII robot

in the IAL laboratory. The experimental results and a comparison between robot performances

along the two trajectories are given in Chapter 5.

Finally, Chapter 6 presents the conclusions of this research together with the recommendations

for future work.



Chapter 2

Problem Formulation

This chapter discusses time-optimal control of manipulators along speci�ed paths and highlights

the issues arising in the practical implementation of such control. Existing methods of addressing

these issues, both at the trajectory planning and at the trajectory tracking level, are presented.

A new formulation for time-optimal control is then introduced and its advantages summarized.

2.1 Path-Constrained Time-Optimal Motion

Path-constrained time-optimal motions (PCTOM) are minimum time motions along a prespec-

i�ed path. At the planning stage, a joint torques history is derived considering actuator torque

limits, joint angle and joint velocity limits. The manipulator is modelled as a serial chain of rigid

links, with each joint individually powered. The friction in the joints and the actuator dynamics

are most often neglected. At the tracking level, a controller is designed that best can track the

planned trajectory. Hence, the robot dynamic capabilities are used at the maximum in PCTOM.

2.1.1 Characteristics

Path-constrained time-optimal trajectories have been found both by using dynamic program-

ming [56], [58], or by identifying the switching points in the position-velocity phase plane [5], [45],

[55]. The advantage of the dynamic programming approach is that the path need not be parame-

8
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terized. Also, performance indices other than minimum time may be easily incorporated. However,

the phase plane approach is computationally very e�cient and has been used in on-line planning

schemes [16].

In the dynamic programming approach, the state space is discretized into a grid of points.

At each point, the next allowable state-points on the grid are de�ned by imposing velocity and

acceleration constraints [58], or velocity, acceleration and jerk constraints [56]. The cost of moving

to each of the allowable state-points is the motion time. This cost is computed assuming that the

acceleration is constant over one step. The dynamic programming algorithm is then applied to

determine the minimum-time trajectory over all of the points.

In the phase-plane approach, the path parameter and its �rst time derivative, the pseudo-

velocity, are taken as the state. The second time derivative of the path parameter, the pseudo-

acceleration, is the control. The nonlinear robot dynamics and actuator constraints are transformed

into state-dependent constraints on the control. For each point along the path, the constraints also

determine a maximum allowable end-e�ector pseudo-velocity such that the actuators can keep the

end-e�ector on the path. This maximum pseudo-velocity as a function of the path parameter is

called the velocity limit curve.

The optimal trajectory is derived by selecting the admissible control that produces the largest

pseudo-velocity at each point along the path, without violating the velocity limit curve. The

solution is given in terms of a switching curve in the phase plane and an e�cient method for

identifying the switching points is provided in [45]. A method for dealing with the case of singular

control is given in [54].

In all of the above cited works, one actuator torque is always saturated. Bobrow et al. [5] and

Shin and McKay [55] have shown that the optimal control takes values only on the bounds of its

admissible set. Bobrow et al. [5] have also shown that, as a consequence, at least one actuator

torque is always saturated. Hence, the optimal policy requires that at least one actuator torque

switches value instantaneously between saturation levels. An example is presented next to illustrate

this bang-bang nature of the optimal actuator torques.

A typical PCTOM trajectory of a 3-dof manipulator (Figure 2.1) and the velocity limit curve

(VLC) are plotted in Figure 2.2 in the s- _s phase plane, where s is the path parameter and _s the
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end-e�ector pseudo-velocity. The robot kinematic and dynamic parameters are taken from [45]

Figure 2.1: The elbow manipulator.

and are given in Table 2.1. In Table 2.1, C.O.M. is the center of mass of link i with respect to frame

i and Ix, Iy, Iz are the central moments of inertia of link i with respect to axes parallel to the axes

of frame i. The prescribed path, taken from the same source, is a parabola given in parametric

form as:

x(s) = 0:5

y(s) = 20 � s3 � 30 � s2 + 10 cdots (2.1)

z(s) = s� 0:5

s = 0 : : : 1.

The algorithm for computing the trajectory is also from [45].

As shown in Figure 2.2, the PCTOM pseudo-velocity is continuous along the entire path and

di�erentiable everywhere except at the �ve switching points. These are the points along the trajec-

tory where the pseudo-acceleration, �s, switches from maximum to minimum or vice-versa. Plotting
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Table 2.1: Robot parameters

Link [m] C.O.M. [m] Mass [kg] Ix[kgm
2] Iy[kgm

2] Iz[kgm
2]

l1 = 0:00 lc1 = 0:05 m1 = 0:0 Ix1 = 0:00 Iy1 = 5:0 Iz1 = 0:0

l2 = 0:75 lc2 = 0:20 m2 = 6:6 Ix2 = 0:10 Iy2 = 0:6 Iz2 = 0:6

l3 = 0:75 lc3 = 0:15 m3 = 4:2 Ix3 = 0:02 Iy3 = 0:2 Iz3 = 0:3

the same PCTOM trajectory in the s-�s phase plane, Figure 2.3, shows the discontinuities in the

pseudo-acceleration at the switching points. The actuator torques necessary to generate this motion

are plotted in Figure 2.4.

These �gures illustrate one of the problematic characteristics of the PCTOM trajectory: the

pseudo-acceleration and the motor torques have discontinuities at the switching points and chatter

occurs when the trajectory in the s- _s phase plane touches the VLC.
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2.1.2 Practical Implementation Issues

Time-optimal trajectories such as the one presented in the previous section represent a measure

of the maximum robot tip velocity at which the actuators can still keep it along the path. However,

as shown, they require instantaneous changes in joint accelerations and in joint actuator torques.

Such discontinuities in actuator torques re
ect the system model used in computing the PC-

TOM trajectories. Namely, the robot links are considered to be completely rigid and the actuator

dynamics are ignored. While these modelling assumptions are su�cient for low speed trajectories,

they can be expected to have an impact on a minimum time motion.

As a result of these assumptions, two negative e�ects arise, and each e�ect compounds the

other. First, since the actuators cannot generate discontinuous torques due to their own internal

dynamics, the joint output lags behind the reference signal. This decreases the tracking accuracy,

and activates the tracking controller. Thus, after each switching point, the joint actuators exhibit

chatter. Second, this chatter of the joint actuators induces vibrations in the robot links. These

vibrations aggravate the wear on the robot and reduce the tracking performance. As a result, the

tracking controller is activated more often and additional strain is imposed on the actuators.

Vibrations are a fundamental limiting factor in any high speed manipulation. They result in

robot wear and reduce the life span of the actuators. In an industrial application, where the robot

must perform the same task hundreds of times per day, fast motions are desirable, but the structural

wear and actuator lifetime are also important. The typical industrial solution is to detune the robot

feedback controller by limiting its bandwidth so as not to excessively excite these vibrations. In

path-following manipulations, however, the tracking performance may be adversely a�ected by

limiting the frequency content of the control signal and other solutions may be required. Thus, all

of these issues must be addressed in an industrial implementation of PCTOM trajectories.

2.2 Research Addressing the Issues in PCTOM

The practicalities involved in path-constrained time-optimal control were recognized shortly

after e�cient algorithms for trajectory computation were developed and the bang-bang nature of

the controls was proven. Methods have been devised for addressing these problems both at the
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tracking controller level and at the trajectory planning level.

A fundamental problem associated with time-optimal control is to ensure a prescribed tracking

accuracy. This is the objective of any path following manipulation task. The tracking performance

is a�ected by unmodelled link 
exibility and joint friction and disturbances occurring during the

performance of the task. Nonetheless, algorithms have been proposed that consider only the e�ect

of disturbances on the tracking performance. Since, in time-optimal control, one actuator is always

saturated while the other actuators adjust their values to keep the end-e�ector on the path, there is

no control input available to compensate for modelling errors and disturbances. Thus, performance

deteriorates when unexpected control saturation occurs.

Improved tracking accuracy may be guaranteed from the planning stage by keeping some torque

in reserve [7], hence determining near-time optimal trajectories. Time-optimal trajectories with

increased tracking performance may be obtained by accounting for the actuator dynamics. This

approach is adopted in Tarkiainen and Shiller [63]. In their work, the actuator constraints are

imposed as limits on the motor voltages. The system consisting of the robot and its actuators is a

third order dynamic system with the pseudo-jerk, the third time derivative of the path parameter,

as the control variable. The time-optimal policy is shown to be bang-bang or bang-singular-bang

in the pseudo-jerk and an algorithm is given to determine the optimal trajectory. The algorithm

ignores the case of singular controls, since these can be avoided by appropriately choosing the

path [54] or by convexifying the set of admissible controls [49]. The optimal torques are continuous

in this formulation and the trajectory is smooth. However, the method does not allow the path

planner to directly impose a desired degree of trajectory smoothness.

The concern for improving the tracking performance exists not only at the planning, but also

at the tracking level. Solutions proposed at the controller level include: (i) a secondary controller

for on-line trajectory time scaling [17]; (ii) an LQG controller for adjusting the switching times on-

line based on the measured performance of the system [62]; (iii) a closed-loop trajectory generator

that is robust to experimentally identi�ed levels of disturbance [32]; (iv) a trajectory preshaping

scheme that compensates for actuator dynamics [51]. Although these methods increase the tracking

accuracy, they do not directly address the problem of discontinuous reference torques or completely

compensate for the resulting transient system behaviour. In [51], however, the overshoot of the

nominal torques and the control chatter after each bang are acknowledged. It is pointed out that
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the overshoot is quite signi�cant and requires that conservative bounds on the admissible torques

be used during the planning stage.

While good tracking accuracy is highly desirable for path-constrained motions, robot wear and

the life span of the actuators are important considerations in any industrial application of time-

optimal control. Unfortunately, it is much more di�cult to measure the cumulative e�ect that a

speci�c algorithm may have on vibrations or wear. Acknowledgements of this issue exist in the

literature [8], [33], [34], [38], [45], [50], [56], and it is recognized that, in practice, some degree of

smoothness is necessary. However, in this review, only one method was identi�ed for generating

and evaluating a smooth trajectory which explicitly considers vibrations [66]. This method is based

on the iterative adjusting of the weights in the cost function till a smooth input is obtained that

results in reduced vibrations in the joints and no oscillations at the end-point of the trajectory.

At the planning level, the smoothness requirement may be considered with respect to the

trajectory smoothness or the smoothness of the actuator torques. Since the actuator torques are

computed as continuous functions of the trajectory parameters, a smooth trajectory translates into

smooth control signals.

In Lin et al. [38], smooth trajectories are planned by choosing cubic polynomials to approximate

the joint paths. This results in trajectories with continuous joint velocities and accelerations. The

motion time is then minimized subject to the physical constraints on joint velocities, accelerations,

and jerks. The limits used are conservative, because they are constant over the entire robot work

space. Hence, they are determined for the worst case, i.e. the arm fully extended (maximum

inertia).

The same joint path parameterization is used in Cao et al. [8], together with a quadratic cost

function involving time and joint accelerations. The limits on the joint variables are imposed

after the optimization is solved, through time scaling. The resulting motion has optimal joint

velocity pro�les, in the sense that the variance of the joint accelerations is minimum in the natural

motion, i.e. with zero initial and �nal states. Then, for the same limits on the motion acceleration,

the motion vibration is minimum. As a result, the strain energy and the mechanical wear are

approximately minimal.

The actuator torques may also be smoothed directly by adding an \energy" term to the objective
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function [45], [50], [56], [64], [66]. This term convexi�es the cost and the Hamiltonian with respect

to the control and creates a minimum that is not necessarily on the control boundaries. In [56]

constraints on the joint jerks are imposed explicitly, while the algorithms in [50] and [66] allow

weighting of the energy term. By modifying this weight, Shiller [50] achieved a desired compromise

between minimum time and increased accuracy, while Wappenhans et at. [66] obtained motions

with reduced low-frequency vibrations and no residual oscillations.

At the tracking and control level, Newman [43] developed a feedback control scheme as a

combination of bang-bang control with sliding-mode control. This feedback law drives the system

to imitate the desirable and feasible set of dynamics, which are speci�ed as a state constraint

corresponding to the motion along the switching curve of the time-optimal control. The concern

with unmodelled dynamics is explicit. An analysis in terms of a design parameter of the controller

is performed. This analysis shows how the parameter should be chosen such that high-frequency

dynamics of the system does not destabilize the controller. Thus, the proposed controller is robust

to parametric uncertainty and unmodelled 
exibility of the robot structure.

Li et al. [37] explicitly acknowledged vibrations as the limiting factor in time-optimal control.

Ways of compromising between minimum motion time, and robot wear and actuator lifetime for

point-to-point motions were considered in their work. Both vibrations and wear were addressed

in two ways: (i) by planning time-optimal motions together with di�erent torque parameteriza-

tions; (ii) by using cost functionals involving terms with various exponential powers of the actuator

torques with piecewise linear, continuous controls. By penalizing the terms containing powers of

the actuator torques, varying degrees of smoothness of the controls were achieved. Two strategies

were recommended for time-optimal control. One involved pre�ltering the time-optimal torques and

then matching the bandwidth of the low-pass �lter to the bandwidth of the feedback controller.

The other utilized the derivative of the torque as the control. However, the lowest vibration levels

corresponded to a quadratic cost functional involving the second derivative of the torque.

In summary, actuator chatter, large overshoot of the nominal torques, decreased tracking ac-

curacy, vibrations, and robot wear arise in the direct implementation of PCTOM trajectories due

to the bang-bang nature of the actuator torques required by such trajectories. These di�culties

have been addressed by a large body of research, and methods have been devised for overcoming

these problems, both at the trajectory planning level and at the tracking controller level. At the
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controller level, solutions include: sophisticated controllers, more accurate models of the robot-

actuators system, �ltering of the reference torques, and parameterizations of the control signals.

However, such approaches do not directly address the cause or completely solve the e�ects of these

di�culties. At the planning level, proposed solutions include smooth joint path parameterizations,

objective functions incorporating an energy term, the use of actuator voltages as the controls,

and the restriction of controls to some suitably chosen set of functions, i.e., piecewise linear and

continuous or piecewise quadratic and continuous controls.

In the following section, a new formulation is proposed for the planning of time-optimal trajecto-

ries for path-constrained tasks. This formulation avoids the disadvantages of PCTOM trajectories

by choosing the derivatives of the actuator torques as the controls.

2.3 Smooth Path-Constrained Time-Optimal Control

The view adopted in this work and supported by the reviewed research is that physical manip-

ulators cannot exhibit discontinuous actuator torques. When trying to achieve such a behaviour,

robot links can be subjected to severe vibrations that may lead to increased robot wear and failure

of the actuator themselves.

Herein it is considered that it is important to address these problems from the trajectory

planning level and not leave them entirely to the tracking controller. The reasons for advocating

these measures at the planning level are twofold. First, eliminating the torque discontinuities from

the planning stage will reduce the controller e�ort and thus better tracking performance and a longer

life span of the actuators are expected. Also, more room is left for controller robustness in face of

model uncertainties. This is important, especially considering that an accurate dynamic model of

the robot is di�cult to obtain, and all trajectory planning schemes rely on such a model. Second,

since the planned trajectories will be free from the problems associated with PCTOM trajectories,

it will be possible to implement them on industrial manipulators using their own \general purpose"

controllers.

Using this approach, minimum time remains the criterion for planning the trajectory. However,

the physical limitations of the robot are considered by requiring that the optimal trajectory be

smooth. In this work, trajectory smoothness is imposed through limits on the rate of variation
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of the actuator torques, hereafter termed actuator jerks. Thus, di�erent degrees of smoothness

of a trajectory may be achieved by adjusting the limits on the actuator jerks. The time-optimal

trajectory resulting when both actuator jerk and actuator torque limits are imposed will be called

the smooth, path-constrained, time-optimal motion (SPCTOM).

2.3.1 Problem Formulation

The SPCTOM planning problem is formulated hereafter for the case of a manipulation task

starting and ending at rest. Thus, the problem that is addressed in this work is:

min
_T2


J =

Z tf

0
1dt, (2.2)

subject to the standard model of the manipulator dynamics:

M(q) � �q+ _qT �C(q) � _q+G(q) = T, (2.3)

the boundary conditions:

q(0) = q0 ; q(tf ) = qf ; _q(0) = _q(tf ) = 0 ; �q(0) = �q(tf ) = 0, (2.4)

the path constraints:

r = r(s), (2.5)

the actuator torque limits:

Tmin � T � Tmax (2.6)

and the actuator jerk limits:

_Tmin � _T � _Tmax (2.7)

where Tmin, Tmax, _Tmin, and _Tmax are the actuator torque and jerk limits, respectively. Further-
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more, q 2 Rn is the vector of joint positions, T 2 Rn is the vector of actuator torques, _T 2 Rn is

the vector of actuator jerks,M(q) 2 Rn�n is the inertia matrix of the manipulator, C(q) 2 Rn�n�n

is a third order tensor representing the coe�cients of the centrifugal and Coriolis forces, G(q) 2 Rn

is the vector of gravity terms, r 2 R3 is a C1 continuous curve parametrized by s, which may be,

for example, the arc length, and n is the number of dof of the manipulator. For simplicity, viscous

and static friction terms have been neglected in the dynamics.

In the above formulation, the actuator jerks represent the bounded controls. However, these

controls would later have to be integrated, in order to derive the actual system inputs in terms

of desired actuator torques. Since the Lagrangian form of the robot dynamics incorporates only

the actuator torques, the third order dynamics is derived. Di�erentiation of Equation (2.3) with

respect to time results in:

M(q) �
...
q + _M(q) � �q+ �qT �C(q) � _q+ _qT � _C(q) � _q+ _qT �C(q) � �q+ _G(q) = _T. (2.8)

In terms of optimal control theory, the third order dynamics of the manipulator, Equation (2.8),

are the dynamics of the system, with _T representing the n-dimensional bounded controls. In the

usual fashion, Equation (2.8) can be written in the form of the system state equation:

_x = F (x;u) = F(x) +K(x)u, (2.9)

where the state of the system is:

xT = (qT _qT �qT )1�3n, (2.10)

while:

F(x) =

0
BBBB@

_q

�q

�M�1
�
q)( _M(q)�q+ �qTC(q) _q+ _qT _C(q) _q+ _qTC(q)�q+ _G(q)

�

1
CCCCA

3n�1

, (2.11)
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K(x) =

0
BBBB@

0n�n

0n�n

M�1(q)

1
CCCCA

3n�n

, (2.12)

and:

u = _Tn�1. (2.13)

Thus, the optimal control problem is reformulated as follows. Find the control _T:

_T : [t0; tf ] �! 
 � Rn, (2.14)

where 
 is the set of admissible controls, that drives the system (2.9) in minimum time from an

initial state:

xT0 =

�
q0

T 01�n 01�n

�
1�3n

, (2.15)

to a �nal given state:

xTf =

�
qf

T 01�n 01�n

�
1�3n

(2.16)

subject to the limits on the states:

Tmin �M(q) � �q+ _qT �C(q) � _q+G(q) � Tmax, (2.17)

and the limits on the controls:

_Tmin � _T � _Tmax. (2.18)

Formulation of the problem solution using Pontryagin's Maximum Principle results in a TPBVP

in a 3n-dimensional state space.
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2.3.2 Path Constraints

The dynamic system described by Equation (2.8) has 3n degrees of freedom. However, the path

constraints (2.5) parameterize the tip position by a single parameter s and reduce the order of the

system to 3. By expressing the joint positions, velocities, accelerations, and jerks as functions of

the path parameter s, the actuator torque limits and jerk limits are transformed into limits on �s,

the pseudo-acceleration, and
...
s , the pseudo-jerk, respectively.

The joint values corresponding to a given end-e�ector position and orientation, q = q(r) can

be determined for each value of the path parameter s by solving the manipulator inverse kinematic

equations and then substituting the path constraints (2.5):

q = q(r(s)) (2.19)

The dependence of the joint velocities _q on the path parameter and its �rst derivative, the

pseudo-velocity, is determined using the Jacobian matrix of the forward kinematic map:

_r = J(q) � _q (2.20)

If the manipulator is not at a singular position, the Jacobian is invertible and:

_q = J�1 � _r = J�1 �
dr

ds

ds

dt
= J�1 � r0 _s = q0 _s, (2.21)

where:

q0 = J�1 � r0, (2.22)

and 0 denotes the derivative with respect to the path parameter.

From Equation (2.21), the joint accelerations and jerks are obtained by successive di�erentia-
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tions with respect to time:

_q = q0 _s (2.23)

) �q = q00 _s2 + q0�s (2.24)

)
...
q = q000 _s3 + 3 � q00 � _s�s+ q0

...
s , (2.25)

where q0, q00, and q000 can be derived using the inverse of Equation (2.22):

r0 = J � q0 (2.26)

) r00 =
dJ

ds
� q0 + J � q00 (2.27)

) r000 =
d2J

ds2
� q0 + 2 �

dJ

ds
� q00 + J � q000. (2.28)

Now, from Equation (2.27):

q00 = J�1 � (r00 �
dJ

ds
� q0), (2.29)

and from Equation (2.28):

q000 = J�1 � (r000 �
d2J

ds3
� q0 � 2 �

dJ

ds
� q00). (2.30)

Substituting Equations (2.23), (2.24) and (2.25) in (2.8) yields the jerk equation:

M � (q000 � _s3 + 3 � q00 � _s � �s+ q0 �
...
s ) +

dM

ds
� _s � (q00 � _s2 + q0 � �s) +

+(q00 � _s2 + q0 � �s)T �C � q0 � _s+ q
0T � _s �

dC

ds
� _s � q0 � _s+

+q
0T � _s �C � (q

00T � _s2 + q0 � �s) +
dG

ds
� _s = _T. (2.31)

The actuator jerk bounds become:

_Tmin � a(s) �
...
s + b(s) � _s � �s+ c(s) � _s3 + d(s) � _s � _Tmax, (2.32)
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where,

an�1(s) = M � q0, (2.33)

bn�1(s) = 3 �M � q00 +
dM

ds
� q0 + 2 � q

0T �C � q0, (2.34)

cn�1(s) = M � q000 +
dM

ds
� q00 + q

00T �C � q0 + q
0T �

dC

ds
� q0 + q

0T �C � q00, (2.35)

dn�1(s) =
dG

ds
� _s. (2.36)

The matrices dM
ds and dG

ds and the third order tensor dC
ds are robot dependent.

Substituting Equations (2.23) and (2.24) into (2.3) yields the torque equation:

M � q0 � �s+M � q00 � _s2 + q
0T � _s �C � q0 � _s+G = T (2.37)

and the actuator torque bounds become:

Tmin � A(s) � �s+ B(s) � _s2 + C(s) � Tmax (2.38)

where:

An�1(s) = M � q0, (2.39)

Bn�1(s) = M � q00 + q
0T �C � q0, (2.40)

Cn�1(s) = G. (2.41)

2.3.3 Torque Limits

The actuator torque bounds (2.38) represent a set of 2n inequalities of the form:

Ti;min � Ai � �s+Bi � _s
2 + Ci � Ti;max, i = 1; : : : ; n , (2.42)

where Ai, Bi, Ci, Ti;min, and Ti;max are the elements of the vectors A(s), B(s), C(s), Tmin, and

Tmax, respectively. For some value of the path parameter s, the feasible region of _s and �s, satisfying

(2.42) and _s � 0, forms a polygon in the _s2 � �s plane. Such a polygon is shown schematically in
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Figure 2.5 for a 3-dof manipulator.

2s
.

max,T
2s

.

2s
. 22[m /s ]

max,Ts
..

min,Ts
..

2
[m

/s
 ]

s..

Figure 2.5: Admissible region in the _s2 � �s plane.

As discussed in [54], for each value of the path parameter s, the bounds on the pseudo-velocity

_s and pseudo-acceleration �s due to the torque constraints (2.38) are:

_s � _smax;T (s) (2.43)

�smin;T (s; _s) � �s � �smax;T (s; _s), (2.44)

where:

�smin;T (s; _s) = max
i

�
min
Ti

�
Ti �Ci �Bi _s

2

Ai

��
, i = 1; : : : ; n , (2.45)

�smax;T (s; _s) = min
i

�
max
Ti

�
Ti � Ci �Bi _s

2

Ai

��
, i = 1; : : : ; n , (2.46)

and

_smax;T (s) = min
i;j

�
max
Ti;Tj

�
Aj(Ti � Ci)�Ai(Tj � Cj)

AjBi �AiBj

��
, i; j = 1; : : : ; n , (2.47)
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when Ai 6= 0 and AjBi � AiBj 6= 0. The subscript T is used to discriminate the pseudo-velocity

and pseudo-acceleration bounds due to the torque constraints (2.38) from those due to the jerk

constraints (2.32), which will be denoted with the subscript J . If Ai = 0 for some i, then this

actuator does not bound the pseudo-acceleration at this point along the path. The limits are

determined by the other n � 1 actuators. The case that Ai = 0 for all i is unlikely, since M is

generally positive de�nite, except for some few particular cases [1], and q0 is a vector tangent to

the path. If AjBi � AiBj = 0, then the ith and jth actuators do not contribute to the velocity

limit, or the maximum velocity is in�nite.

In the s � _s � �s phase space, the pseudo-acceleration bounds (2.44) represent a lower and an

upper surface which meet and vanish along the VLC on the s � _s plane. In Figure 2.6 1, these

surfaces have been plotted for the actuator torque limits given in Table 2.2. All the states inside

these surfaces are states that obey the actuator torque constraints (2.17).
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Figure 2.6: Torque limits in the s� _s� �s space and the VLC (dark line).

The VLC represents an upper bound for any feasible trajectory in the s� _s plane.

1Unless otherwise speci�ed, all the �gures in this and the following sections refer to the elbow manipulator with
the dynamic parameters given in Table 2.1 moving along the parabolic path speci�ed by Equations (2.1).
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2.3.4 Jerk Limits

A similar approach can be used to determine the pseudo-velocity, pseudo-acceleration and

pseudo-jerk bounds due to the actuator jerk limits. Thus, the actuator jerk bounds (2.32) rep-

resent a set of 2n inequalities of the form:

_Ti;min � ai
...
s + b�i �s+ c�i �

_Ti;max, i = 1; : : : ; n (2.48)

where ai, bi, ci, di, _Ti;min, and _Ti;max are the elements of the vectors a, b, c, d, _Tmin, and _Tmax,

respectively, and b�i = bi _s and c�i = ci _s
3 + di _s. For a set of values of the path parameter s and the

pseudo-velocity _s, the feasible region of �s and
...
s satisfying (2.48), forms a polygon in the �s�

...
s

plane. Such a polygon is shown schematically in Figure 2.7 for a 3-dof manipulator.

s
..

s
..

[m/s ]
2

s
..

max,Js
..

min,J

mins
...

maxs
...

s 
[m

/s
 ]

...
3

Figure 2.7: Admissible region in the �s�
...
s plane.

As shown in Figure 2.7, for each set of values for s and _s, the bounds on the pseudo-acceleration

�s and the pseudo-jerk
...
s due to the jerk constraints (2.32) are:

�smin;J(s; _s) � �s � �smax;J(s; _s) (2.49)

...
smin(s; _s; �s) �

...
s �

...
smax(s; _s; �s) (2.50)
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where:

...
smin(s; _s; �s) = max

i

(
min
_Ti

 
_Ti � c�i � b�i �s

ai

!)
, i = 1; : : : ; n , (2.51)

...
smax(s; _s; �s) = min

i

(
max

_Ti

 
_Ti � c�i � b�i �s

ai

!)
, i = 1; : : : ; n , (2.52)

and

�smin;J(s; _s) = max
i;j

(
min
_Ti; _Tj

 
aj( _Ti � c�i )� ai( _Tj � c�j)

ajb�i � aib�j

!)
, i; j = 1; : : : ; n , (2.53)

�smax;J(s; _s) = min
i;j

(
max
_Ti; _Tj

 
aj( _Ti � c�i )� ai( _Tj � c�j )

ajb�i � aib�j

!)
, i; j = 1; : : : ; n , (2.54)

assuming that ai 6= 0 and ajb
�
i � aib

�
j 6= 0. Again, the subscript J indicates that the �s and

...
s

bounds are due to the jerk constraints (2.32). If ai = 0 for some i, then this actuator does not

bound the pseudo-jerk at this point along the path. The limits are determined by the other n� 1

actuators. The case that ai = 0 for all i is unlikely for the same reasons as in the case of the torque

constraints, since a = A. If ajb
�
i � aib

�
j = 0, then the ith and jth actuators do not contribute to

the pseudo-acceleration limits, or any pseudo-acceleration is admissible. This is the case with any

manipulator starting from rest, for example.

In the s� _s� �s space, the pseudo-acceleration constraints (2.49) represent two limiting surfaces

which meet and vanish along a curve. The projection of this curve on the s� _s plane is called the

jerk limited velocity limit curve (JL-VLC). The limiting surfaces are plotted in Figure 2.8 for the

�rst column of actuator jerk limits given in Table 2.2.

The JL-VLC expresses the bound on the pseudo-velocity due to the jerk constraints (2.32):

_s � _smax;J(s). (2.55)

It represents an upper bound on any feasible trajectory in the s � _s plane. For each value of the

path parameter, this maximum allowable pseudo-velocity due to the jerk constraints is de�ned as
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Table 2.2: Actuator parameters

Torque limits Medium jerk limits High jerk limits Low jerk limits

Example 1 Example 2 Example 3

T [Nm] _Tex1[Nm=sec] _Tex2[Nm=sec] _Tex3[Nm=sec]

T1 = 140 _T11 = 500 _T12 = 5000 _T13 = 140

T2 = 140 _T21 = 500 _T22 = 2000 _T23 = 140

T3 = 50 _T31 = 100 _T32 = 1000 _T33 = 50
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Figure 2.8: Control constraints in the s� _s� �s space.

the _s value at which the feasible region in the �s�
...
s plane reduces to a point:

�smin;J(s; _smax;J) = �smax;J(s; _smax;J). (2.56)

This maximum can be computed by a numerical search which determines the value of _s that satis�es

Equation (2.56) for a given value of s.

2.3.5 Admissible States

In the formulation of the SPCTOM problem proposed herein, the actuator jerk limits are
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pseudo-velocity:

_s � minf _smax;T (s); _smax;J(s)g , (2.57)

and a new constraint on the pseudo-acceleration:

maxf�smin;T (s); �smin;J (s)g � �s � minf�smax;T (s); �smax;J (s)g. (2.58)

Equation 2.57 de�nes a global velocity limit curve, called the smooth motion velocity limit curve

(SMVLC). In the s � _s plane, the SMVLC is an upper bound on any feasible trajectory. Herein,

the SMVLC is computed by a numerical search through bisection.

The SMVLC corresponding to the three examples in Table 2.2 are plotted in Figure 2.11.

Figure 2.11 demonstrates that the SMVLC is determined by a combination of both actuator torque

and jerk limits. Depending on the restrictions of the jerk limits, they can determine the SMVLC

almost entirely, as shown in the third example, or they can have little in
uence on it, as shown in

the second example.

2.3.6 System Dynamics

For the reduced system of order 3 where the path constraints (2.5) are incorporated into the

dynamics (2.8), the states of the system are x = (s _s �s)T , while the pseudo-jerk
...
s is the scalar

control u.

The smooth time-optimal path-constrained trajectory planning problem can be formulated now

as follows. Determine a scalar control:

u : [t0; tf ] �! U � R, (2.59)

where U is the set of admissible controls, such that:

min
u

J =

Z tf

0
1dt, (2.60)
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Figure 2.11: SMVLC for di�erent actuator jerk limits.

subject to the system dynamics:

_x =

2
66664

0 1 0

0 0 1

0 0 0

3
77775 � x+

2
66664

0

0

1

3
77775 � u (2.61)

the boundary conditions:

x0 = (s0 _s0 �s0)
T

xf = (sf _sf �sf )
T , (2.62)

the state inequality constraints:

_s � minf _smax;T (s); _smax;J(s)g, (2.63)
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maxf�smin;T (s; _s); �smin;J (s; _s)g � �s � minf�smax;T (s; _s); �smax;J (s; _s)g, (2.64)

and the state-dependent control inequality constraints:

...
smin(s; _s; �s) �

...
s �

...
smax(s; _s; �s). (2.65)

In this �nal formulation, the system dynamics is described by a system of three �rst order

di�erential equations with constant coe�cients. Thus, the complexity of the TOC problem is

shifted from the system dynamics to the nonlinear state-dependent state and control constraints.

2.4 Summary

PCTOM trajectories are not suited for direct implementation in an industrial application be-

cause they require discontinuous actuator torques. A physical robot has unmodelled link 
exibility

and actuator dynamics. In this situation, bang-bang joint torques induce arm vibrations. These

characteristics decrease the tracking performance in path following applications resulting in strain

on the actuators and the mechanical structure. Wear becomes a concern.

Recent research has addressed the need for smooth actuator torques both at the trajectory

planning and at the trajectory tracking level. However, none of the reviewed works proposes a

method for smoothing the torques individually, based on the dynamic characteristics of the robot

and the path.

Herein, the path-constrained time-optimal trajectory planning problem is reformulated such

that the actuator jerks are the controls and limits on both joint torques and joint jerks are consid-

ered. The actuator jerk limits may be chosen such that di�erent degrees of smoothness are imposed

on the actuator torques.

The independence of the torque and jerk limits is re
ected in the SMVLC, which is determined

by both limits. The SMVLC is computed herein using a bisection search.



Chapter 3

Methodology

In this chapter, a methodology is proposed for solving the problem formulated in Chapter 2.

Namely, determine the trajectory that drives the manipulator along a prescribed path from a given

initial state to a �nal desired state in minimum time, subject to limits on the actuator torques and

their rates of variation, the actuator jerks. This is the SPCTOM trajectory planning problem.

Herein, this TOC problem is transformed into a nonlinear parameter optimization problem.

Previous work on solving such optimal control problems through nonlinear programming techniques

is reviewed and the 
exible tolerance method (FTM) [27] is identi�ed as a suitable candidate method

for solving the SPCTOM problem. The formulation of the nonlinear optimization is presented and

an overview of the FTM is given.

3.1 SPCTOM Trajectory Characteristics

The SPCTOM problem as de�ned in Section 2.3.6 is a TOC problem for a �rst order lin-

ear system with constant coe�cients, nonlinear state-dependent state and control constraints and

preimposed initial and �nal states. Such TOC problems have been solved either by applying the

PMP to derive the necessary conditions for optimality and then using multiple shooting methods to

solve the resulting two point boundary value problem (TPBVP) [6] or by a search for the switching

points, using either dynamic programming [56] or speci�c algorithms [5], [45], [54], [59].

Two di�culties arise in the application of these approaches in the present case. First, the

34
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complexity of the dynamic programming algorithms grows exponentially with the phase space di-

mension, rendering the method infeasible for more than two dimensions. As de�ned, the SPCTOM

problem has a three dimensional phase space. Second, the other two approaches (based on PMP

and the search for the switching points) depend on the bang-bang or bang-singular-bang structure

of the optimal controls. This structure has been proven using results from OCT regarding systems

with state dependent control constraints [35]. However, no results have been proven using OCT

concerning the necessary optimality conditions for systems with state and control constraints which

are independently active. Thus, for the SPCTOM problem, it is not guaranteed that the optimal

controls take values only on the boundary of the admissible set.

Hereafter, the SPCTOM trajectory planning problem will be analyzed and solved in the s� _s

plane. By doing so, another advantage is obtained besides surmounting the di�culties presented

above. Namely, in the s � _s plane both end points are �xed, while in the time domain the �nal

point is free. Thus, the TOC problem lends itself to a nonlinear parameter optimization problem

in this phase plane.

To state the optimization problem, two results will be needed : (i) �rst, that any feasible

trajectory, i.e., a trajectory complying with the constraints (2.63)-(2.65), is a smooth curve in the

s � _s plane, i.e., it has a continuous �rst derivative; and, (ii) second, that in the s � _s phase

plane, both the trajectory slopes at the path end-points and the height of the trajectory, i.e., the

pseudo-velocity along the path, a�ect the motion time. These two results are established below.

The smoothness of a feasible trajectory can be proved by considering the control constraints

(2.65). These inequalities impose that, at any point along the trajectory, with the exception of the

�rst and last point (when the manipulator is starting from or stopping at rest), the pseudo-jerk
...
s be limited. Then, the pseudo-acceleration �s is continuous along the entire trajectory and so is

the pseudo-velocity _s. This result can be established considering a feasible trajectory in the s� _s

plane. Such a trajectory is a curve _s(s). Therefore, its �rst derivative is d _s
ds . Considering that:

�s =
d _s

ds
�
ds

dt
= _s �

d _s

ds
(3.1)
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then:

d _s

ds
=

�s

_s
. (3.2)

As both �s and _s are continuous functions along the entire trajectory, it follows that d _s
ds is continuous

along the entire trajectory. The end points present no di�culty, since at these points both the

pseudo-velocity and the pseudo-acceleration are zero. Thus, the values of d _s
ds at these points can be

obtained as:

�
d _s

ds

�
0

= lim
s&s0

d _s

ds
(3.3)

and

�
d _s

ds

�
f

= lim
s%sf

d _s

ds
. (3.4)

The second result needed for solving the SPCTOM problem is that the optimal trajectory

motion time is determined both by its end slopes and its height in the phase plane. The in
uence

of each of these two elements is illustrated in Figure 3.1(a) and 3.1(b). In Figure 3.1(a), two

trajectories are shown that di�er from each other over some path parameter interval due to the

di�erent initial slopes in the phase plane. Considering the identity:

tf =

Z sf

s0

ds

_s
, (3.5)

one can see that trajectory (i) results in a shorter motion time that trajectory (ii). Similarly, in

Figure 3.1(b), the two trajectories have the same slopes at the end points, but (iii) is higher than

(iv) over the path parameter interval, hence it has a shorter motion time. The combined e�ect of

these two factors determines the motion time.

In order to determine the optimal smooth curve in the s � _s phase plane that does not vio-

late actuator torque and jerk limits, two issues have to be addressed. First, the trajectory has to

be approximated in some manner, such that it can be represented by a �nite number of parame-

ters. Second, an optimization technique must be selected to determine the optimal values of these

parameters.
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(a) Trajectories with di�erent initial slopes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

path parameter [m]

ps
eu

do
−

ve
lo

ci
ty

 [m
/s

]

(iii)
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(b) Trajectories with the same initial slopes

Figure 3.1: In
uence of the end slopes and the height of the trajectory on the motion time.

Herein, the trajectory is approximated by cubic polynomials. By this choice, the smoothness

requirement is satis�ed. Furthermore, there is a great deal of material available on using such

polynomials for function approximation.

3.2 Approximating Functions in Robotics

In optimal motion planning robotics research, approximating functions have been used for

planning paths [4], [9], [10], [16], [20], [25], [30], [39], [40], [46], [53] and trajectories [28], [38],

[48]. Using such functions, in�nite dimensional optimization problems have been converted to

�nite dimensional optimizations. Theoretically, an in�nite number of such approximating functions

should be used. However, for practical purposes, approximations with a �nite number of functions

may still produce paths or trajectories su�ciently close to the true optimal ones.

However, such an approach leads to further problems, namely : (i) the choice of the basis

functions used in the approximation; (ii) treatment of the equality and inequality constraints;

(iii) the choice of the optimization algorithm. These problems are usually interlinked and as such

the choice of one a�ects the choice of the others. Generally speaking, however, cubic splines have

been the basis functions of choice for path approximation. They are selected for their properties of
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smoothness, di�erentiability, and simplicity of parameterization. Also, spline theory shows that any

smooth curve can be approximated to an arbitrary degree of accuracy using an adequate number

of splines [18]. Moreover, a small number of splines is generally su�cient to approximate a smooth

curve well.

This philosophy was originally applied for determining time optimal paths. The path was

parameterized in some appropriate manner and the algorithm in [5] was used to compute the

minimum time motion along this path. Then, an optimization method suited for incorporating the

speci�c constraints was used to �nd the optimal path by varying the path parameters.

Rajan [46] assumed that the time optimal path should be smooth (sharp corners would require

the manipulator to slow down) and that it could adequately be approximated by a low number of

cubic splines. Hence, he parameterized the joint space path by one spline, discretized the parameter

space and searched it to �nd the minimum. A gradient descent technique was applied afterwards

to locate the minimum more precisely.

The same type of approach was extended to path planning in cluttered environments by Gilbert

and Johnson [25], [30], Dubowsky et al. [20], Shiller and Dubowsky [52], [53], and Bobrow [4].

Gilbert and Johnson [25], [30] used basis functions at least twice di�erentiable for path para-

meterization. The path was assumed to be linear in the basis functions. Obstacle constraints were

incorporated as special state constraints and the constrained optimization was transformed into an

unconstrained one by use of penalty functions. The distance functions were shown to be continu-

ously di�erentiable if parts were modeled by strictly convex sets and simple gradient formulas for

them were derived. The optimal path was found through a Broyden-Fletcher-Goldfarb-Shanno-type

algorithm that optimized the basis functions coe�cients of an initially feasible path.

Dubowsky et al. [20] studied di�erent path parameterizations. Thus, straight lines connected

by circular arcs, perturbations about a straight line by a Fourier Series and cubic Bezier splines

were used for path representation. Among them, splines were found to allow easy manipulation

of the path's shape through a limited number of parameters. Obstacle and joint constraints were

incorporated into the cost through weighted penalties. This approach had the desirable feature

of keeping the manipulator some distance away from the constraints. For solving the parameter

optimization problem, both a Quasi-Newton method and the Pattern Search method were applied.
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A cubic B spline path parameterization in conjunction with the Pattern Search method was applied

by Shiller and Dubowsky [52] to plan time optimal paths tangent to the Acceleration Lines. The

same authors [53] extended then the technique to incorporate gripper and payload constraints.

They found that the Pattern Search method, which did not require derivatives of the cost function,

performed better in the majority of the problems.

Bobrow [4] used a similar approach for determining time optimal motions while incorporating

joint limits, actuator torque limits, and collision avoidance constraints. He parameterized the path

by cubic B splines, since B splines allow arbitrary smoothing of the path. The gradients of the

objective function and the constraints were estimated numerically, and the vertices de�ning the path

were varied till the minimum transversal time path was found. The problem was cast as a sequence

of unconstrained minimizations with cubic interior penalty functions for the constraints. Each

unconstrained minimization was solved by the Davidon-Fletcher-Powell (DFP) search technique.

Croft et al. [16] determined near-time optimal paths as a step towards on-line time optimal

motion planning. They used a cubic Hermite spline for path parameterization together with a

two-step optimization algorithm. At the �rst level, analytical formulations and heuristic rules

were used to select the best initial path direction and an initial path approximation. At the

second level, the 
exible polyhedron method (FPM) was employed to determine the optimal path

parameters. The near-time optimal path was chosen as the minimum curvature one, with the

intent of avoiding sharp corners. As the analysis indicated that the cost was a smooth function of

the two variable parameters, a Quasi-Newton method (e.g., the DFP method) was indicated as an

alternative minimization technique.

Finally, at the path planning level, Martin and Bobrow [40] used cubic B splines for parame-

terizing a minimum e�ort joint space path. The path was assumed to depend linearly on the path

parameters and the Newton-Euler formulation of robot dynamics was expressed in terms of the

product of exponentials formula. This formulation allowed the authors to compute analytic gra-

dients of the objective function with respect to the path parameters and thus a steepest descent

technique was applied to �nd the optimal path.

Cubic [9], [28], [38] or quartic splines [9], [10] were also used for parameterizing joint space

trajectories. However, in the case of trajectory planning, the TOC problem was not solved through

nonlinear programming, but rather through scaling the trajectory subjected to joint, velocity,
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acceleration, and jerk limits.

3.3 Proposed Method

Similar to the research reviewed in Section 3.2, the present work solves a TOC problem through

a mathematical programming technique. That is, the SPCTOM trajectory is computed through

a search in the s � _s plane for the minimum time smooth trajectory. However, in this approach,

rather than parameterizing the Cartesian path or the joint space path, the state space trajectory

is parameterized. By doing so, the TOC problem is formulated as a �xed end points problem

which lends itself to solving through nonlinear optimization. Nevertheless, in using a state space

trajectory parameterization, the choices of basis functions and of trajectory parameters must be

justi�ed.

3.3.1 Basis Functions

As shown in Section 3.1, the SPCTOM trajectory is a smooth curve in the s � _s plane; i.e.,

it is C2 continuous. Hence, the lowest degree polynomials that can be used to approximate it are

cubics.

Higher degree polynomials present no an advantage here, since the extra degrees of freedom

they o�er are not needed. Also, the optimal trajectory is obtained from a small number of splines.

Therefore, the higher the polynomial degree of the splines, the more oscillatory they become. As

a result, higher order polynomials will actually result in a poorer representation of the SPCTOM

trajectory.

In view of this, cubic polynomials are chosen as basis functions herein. The base trajectory

is obtained by splining them together through selected knot points. The coe�cients of the cubic

polynomials are computed using the Matlab Spline Toolbox. The selection of the knot points, as

well as other properties of the polynomials, are discussed in the following section.
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3.3.2 Optimization Variables

The parameters de�ning the trajectory are the pseudo-velocities of the end-e�ector at predeter-

mined points along the Cartesian path (knot points) and the slopes of the trajectory in the s� _s

plane at the path end points. Thus, the pseudo-velocities and the trajectory end slopes are the

optimization variables in this problem. These variables control the motion time : the higher the

knot points (as located in the phase plane), the shorter the trajectory transversal time. On the

other hand, the end slopes control the speed at which the actuator torques leave or approach their

static equilibrium values. Therefore, steeper slopes result in shorter motion time.

The trajectories shown in Figure 3.2 1 illustrate the in
uence of the trajectory parameters on

the motion time. The solid line represents an exemplar trajectory. The dot-dashed line is the

trajectory obtained when the initial trajectory slope was increased by 70%; the dashed line was

obtained by increasing the �nal trajectory slope by 70%; and the dotted line was obtained by

increasing the third knot-point pseudo-velocity by 70%.
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Figure 3.2: Sample trajectories in the s� _s plane and their motion times.

1All the �gures in this chapter are plotted for the elbow manipulator with the dynamic parameters given in
Table 2.1 moving along the parabolic path speci�ed by Equations (2.1).
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In order to de�ne the spline basis functions, the location of the knot points along the path must

be speci�ed. Fixing the location of the knot points along the Cartesian path results in lost degrees

of freedom in the search for the optimal path. However, this is a necessary step in transforming

the TOC problem into a tractable optimization.

In this work, the location of the knot points is chosen to be the same as that of the PCTOM

trajectory switching points (Figure 3.3). These switching points indicate where each joint actuator

is, in turn, saturated due to the generalized dynamic forces of the robot's motion under PCTOM.

Since PCTOM is the limit for SPCTOM, these switching points are, in the limit, the same for

SPCTOM and provide a reasonable estimate of the location of the SPCTOM switching points

along the parameterized path. Further work to improve these switching points is beyond the scope

of this thesis.

Extra knot points could be chosen; however, as the number of the PCTOM trajectory switching

points can be considerable (�ve for the PCTOM trajectory in Figure 3.3), the addition of more

knot points would signi�cantly increase the number of optimization variables (from seven to twelve

in this example). For simpler PCTOM trajectories, such as those having a single switching point,

using more knot points is a reasonable option which is investigated in Chapter 4.
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Figure 3.3: Switching points of the PCTOM trajectory.
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The optimization variables are shown in Figure 3.4, for an exemplar splined trajectory. The

knot points are indicated with the \o" symbol and the end slopes are marked with tangent lines at

the beginning and end of the trajectory. The vector of optimization variables, x, is de�ned as:

x =

 
d _s
ds0

d _s
dsm;0

_s1
_sm;1

� � �
_sp
_sm;p

d _s
dsf

d _s
dsm;f

!T

, (3.6)

where the values with the index m correspond to the limiting PCTOM (the dashed line in Fig-

ure 3.4), while the other values correspond to the splined trajectory (the solid line), and p is the

number of switching points of the PCTOM trajectory. The optimization variables are normalized

since the end slopes vary over a much wider range than the pseudo-velocities. The normalization

is performed with respect to the PCTOM trajectory because this trajectory always represents an

upper bound for the smooth optimal motion, namely, time optimal motion without smoothness

constraints.
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Figure 3.4: The optimization variables. The knot-points are indicated with the \o" symbol.
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Figure 3.5: Motion time and its level curves with respect to several parameters varied over their
ranges.

The selection of an optimization method depends on the relationship between the identi�ed

optimization vector, x, and the cost function, namely, motion time. As is typically the case with

trajectory optimization, the motion time is not linear in the variables. The relationship between

the cost function and the parameters is illustrated in Figure 3.5, where the trajectory transversal

time is plotted with respect to two of the variables over their range, namely from zero to one.

Furthermore, there exist islands of inadmissibility in the parameter space. That is, there are points

in the parameter space that result in trajectories that require negative pseudo-velocities. This

phenomenon was �rst observed by Shin and McKay [55]. An example of such a case is shown in

Figure 3.6.
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Figure 3.6: Plot of a phase plane trajectory resulting from a point in the inadmissible region of the
parameter space. The resulting trajectory is physically meaningless (cannot be achieved).
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Thus, the SPCTOM problem is recast as follows : the SPCTOM trajectory results from splining

cubic polynomials in the s � _s phase plane through a set of optimized x knot points. The knot

point locations along the path are the same as the location of the switching points of the PCTOM

trajectory. The end-e�ector pseudo-velocities at these locations and the trajectory slopes at the

path end points are determined through an optimization process. The end-e�ector pseudo-velocities

must all be positive, i.e., the trajectory must be admissible. The splined trajectory must be within

actuator torque and actuator jerk limits and take minimum time.

3.3.3 Numerical Solution

The above problem is solved by �nding the optimal trajectory end slopes and the pseudo-

velocities for the knot points in the parameter space for the splined trajectory. Therefore, the

numerical solution of the SPCTOM trajectory planning problem is an approximation of the in�nite

dimensional OCP by a p+ 2 dimensional optimization problem. The approximation is motivated

by the complexity of the OCP.

There are a number of considerations involved in such a numerical solution for an OCP, namely:

� The incorporation of equality constraints, i.e. system dynamics.

� The treatment of inequality constraints, i.e. actuator torque and jerk constraints.

� The choice of a descent algorithm.

� The di�erent functions and their derivatives evaluation.

� The determination of a good initial feasible approximate solution.

� The achievement of a reasonable computational cost.

Clearly, there is no algorithmic approach that best addresses these issues for any problem. There-

fore, the method proposed herein is based on the particulars of the SPCTOM trajectory planning;

namely:

� The cost function and the constraints are nonlinear functions of the trajectory parameters.

Furthermore, they are not analytic functions, but can only be computed numerically.
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� Objective function evaluations are expensive.

� Analytical derivatives of the cost function and the constraints are not available.

� The transversal time may not be di�erentiable with respect to the trajectory parameters,

primarily because of the numerical approximations involved in its computation [53].

� The solution is expected to lie on the constraint boundary.

Two options exist for solving a constrained optimization: (i) transformation of the constrained

optimization problem into an unconstrained problem by incorporating the constraints into the ob-

jective through penalties; (ii) directly solving the constrained optimization problem. Since a penalty

function approach drives the solution away from the constraints, where the solution is expected

to be found, a constrained optimization is more appropriate for planning SPCTOM trajectories.

Furthermore, a method that does not require analytical or numerical derivatives is required. Fi-

nally, a method that minimizes objective function evaluations is important due to the computation

expense of such evaluations.

In view of this, the optimization is carried out using the 
exible tolerance method (FTM)

in [27]. The FTM is a mathematical programming technique that improves the value of the objec-

tive function by using information provided by both feasible points, as well as certain nonfeasible

points termed near-feasible points (Figure 3.7). As the search proceeds, the near-feasibility limits

(determined by the tolerance �) are made more restrictive, until in the limit only feasible points

are accepted. The details of the FTM, as well as the implementation of the algorithm, are pre-

sented in Appendix A. However, the FTM features that make it suited for determining SPCTOM

trajectories are reviewed here. Namely:

� It allows for nonlinear objective function and nonlinear equality and/or inequality constraints.

� It transforms all equality and inequality constraints into one single inequality constraint,

which results in a problem simpli�cation.

� It does not require derivatives.

� It uses information about both feasible and near-feasible points, thus maintaining the search

close to the constraint boundary.
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Figure 3.7: The parameter space in the Flexible Tolerance Method - Example for a two-dimensional
optimization.

� It is computationally economical, because it does not spend a considerable amount of com-

putation e�ort in satisfying rigorous feasibility requirements.

� It has successfully been applied to complex engineering problems with up to nine variables

and forty-four constraints [15], [22].

As other constrained optimization techniques, the FTM requires an initial guess of a feasible

solution. However, guessing such a solution is not di�cult. If the path is feasible (namely, within

the static and kinematic robot workspace), then there always exists a feasible trajectory (although

it could be in�nitely slow).

The question of whether the search has returned the global optimum has no de�nite answer.

This is the case with any nonlinear optimization. In this case the objective function, i.e. motion

time, is a complex function of many variables and it appears to have many local minima. To

increase the con�dence that the global optimum has been achieved, it is proposed herein to rerun

the optimization starting with a number of di�erent initial guesses.
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3.4 Summary

This chapter developed an optimization solution for the SPCTOM trajectory planning problem

formulated in Chapter 2. The method proposed is based on solving an in�nite dimensional OCP by

a �nite dimensional optimization. This approach uses cubic polynomials splined together through

knot points to approximate the SPCTOM trajectory in the s � _s plane. Cubic splines have been

used in robotics before for approximating optimal paths or optimal trajectories in the time domain.

However, this is the �rst time that they have been used for trajectory interpolation in the phase

plane.

The knot point location along the Cartesian path is chosen to be the same as the location of

the switching points of the PCTOM trajectory. This provides a compromise between an acceptable

number of optimization variables and the dynamic characteristics of the robot along the given path.

The computation of the optimal trajectory reduces to a search for the optimal knot points in the

parameter space. The search is performed using the FTM since it allows for nonlinear cost function,

as well as equality and/or inequality constraints. Furthermore, the algorithm has low requirements

on an initial feasible trajectory and can �nd optimal solutions that are on the constraint boundary.

As with any other nonlinear optimization algorithm, no guarantee exists that the global optimal

trajectory has been determined. Therefore, the search for the optimal parameters is performed

multiple times, each time starting from another point in the parameter space. The trajectory with

minimum transversal time is then chosen as the computed SPCTOM trajectory.



Chapter 4

Simulations

In this chapter, SPCTOM trajectories are planned using the methodology developed in Chap-

ter 3. As well, the e�ect of selecting more knot points than the number of switching points for

the related PCTOM trajectory is investigated. A planning level comparison is performed between

the SPCTOM trajectory, the PCTOM trajectory and a standard smooth polynomial trajectory.

Finally, the performance of each of these trajectories is compared using a simulated robot and

controller model.

The simulations presented herein serve several purposes: (i) they demonstrate the methodology

developed in Chapter 3; (ii) they allow the assessment of whether or not the proposed method is

suitable for computing SPCTOM trajectories; (iii) they establish a correlation between the limits

imposed on the actuator jerks and the quality of the trajectory (as re
ected by the tracking accu-

racy); and (iv) they permit an evaluation of the performance of a SPCTOM trajectory compared

to other trajectories.

The trajectory performance is evaluated from the point of view of both improving task produc-

tivity and reducing the strain on the robot and the controller. Thus:

� Motion time re
ects task productivity.

� Tracking accuracy determines the quality of the trajectory.

� Actuator torques smoothness re
ects the robot and actuator strain.

49
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4.1 SPCTOM Planning

In this section, the methodology developed in Chapter 3 is demonstrated through simulations.

The e�ect of choosing more knot points than the number of switching points of the related PCTOM

trajectory is studied.

The robot considered throughout this section is the elbow manipulator introduced in Chapter 2.

Again, the robot dynamic parameters, the torque limits, and the two exemplar paths are taken

from [45]. The robot data is repeated here for convenience (Tables 4.1 and 4.2). The dynamic

model of the robot is detailed in Appendix B. The three di�erent jerk limits have been selected to

demonstrate the planning results. The \low jerk limits" represent a very smooth motion with low

stress on the manipulator. The \high jerk limits" represent the other end of the range, approaching

PCTOM motion in the limit. The \medium jerk limits" �ll out the range.

Table 4.1: Robot parameters (repeated).

Link [m] C.O.M. [m] Mass [kg] Ix[kgm
2] Iy[kgm

2] Iz[kgm
2]

l1 = 0 lc1 = 0:05 m1 = 0 Ix1 = 0 Iy1 = 5 Iz1 = 0

l2 = 0:75 lc2 = 0:2 m2 = 6:6 Ix2 = 0:1 Iy2 = :6 Iz2 = 0:6

l3 = 0:75 lc3 = 0:15 m3 = 4:2 Ix3 = 0:02 Iy3 = :2 Iz3 = 0:3

Table 4.2: Actuator parameters (repeated).

Torque limits Medium jerk limits High jerk limits Low jerk limits

Example 1 Example 2 Example 3

T [Nm] _Tex1[Nm=sec] _Tex2[Nm=sec] _Tex3[Nm=sec]

T1 = 140 _T11 = 500 _T12 = 5000 _T13 = 140

T2 = 140 _T21 = 500 _T22 = 2000 _T23 = 140

T3 = 50 _T31 = 100 _T32 = 1000 _T33 = 50

4.1.1 Parabolic Path

In the following examples, the end-e�ector moves along the parabolic path given by Equa-
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tions (2.1), namely:

x(s) = 0:5

y(s) = 20s3 � 30s2 + 10s

z(s) = s� 0:5

s = 0; : : : ; 1.

The PCTOM trajectory has �ve switching points (Figure 3.3). The location of these points in the

s � _s plane is given in Table 4.3. The slopes of the PCTOM trajectory in this plane are 19:875

at the starting point and �24:07 at the ending point. As explained in Chapter 3, these values are

used for scaling the SPCTOM variables.

Table 4.3: Location of the PCTOM switching points in the s� _s plane.

Switching point

1 2 3 4 5

Path parameter s1 = 0:036 s2 = 0:216 s3 = 0:492 s4 = 0:752 s5 = 0:956

Pseudo-velocity _s1 = 0:344 _s2 = 0:932 _s3 = 0:697 _s4 = 0:955 _s5 = 0:497

Hence, in this example, the vector of optimization variables for SPCTOM is:

x =

 
d _s
ds0

19:875

_s1
0:344

_s2
0:932

_s3
0:697

_s4
0:955

_s5
0:497

d _s
dsf

�24:07

!T

. (4.1)

The SPCTOM trajectories are determined for the three di�erent jerk limits in Table 4.2. These

trajectories are obtained through a nonlinear programming method. The cost function, namely,

the motion time, is multi-modal. Therefore, it is not possible to decide if the global optimum has

been determined. To improve the chance of determining the global minimum, four di�erent initial

guesses are used. In the end, the optimization is restarted using three of these optima (the best

one is excluded) as initial guess values. The SPCTOM trajectory is computed by splining cubics

through the optimal knots obtained in the optimization. The motion times obtained after each

optimization, as well as after the restart, are shown in Table 4.4.

The PCTOM trajectory and the SPCTOM trajectories for the three examples (i.e. the fastest

trajectory in each case), together with the corresponding actuator torques and jerks, are plotted in
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Figures 4.1-4.4.

Table 4.4: Optimal motion times for the elbow manipulator along the parabolic path [sec].

Initial guess SPCTOM PCTOM

Example 1 Example 2 Example3

Medium jerk limits High jerk limits Low jerk limits

1 t1 = 3:03 t2 = 1:91 t3 = 4:08

2 t1 = 3:45 t2 = 2:05 t3 = 4:24

3 t1 = 3:85 t2 = 2:61 t3 = 5:07 t = 1:72

4 t1 = 2:80 t2 = 2:06 t3 = 4:97

Restart t1 = 2:74 t2 = 1:91 t3 = 3:93
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Figure 4.1: PCTOM for the elbow manipulator along the parabolic path.

As shown in Table 4.4, by restarting the optimization either the previous best trajectory is

obtained or a new trajectory with a lower motion time is found. No guarantees exist that the

trajectory obtained after the restart is the globally optimal one. However, if, after the restart, no

or very little improvement is obtained, the con�dence that the global optimum has been achieved

increases. As this is the case with the three examples presented here, it is expected that the

trajectories found approach the SPCTOM trajectory in each case.

The second example (Figure 4.3) further supports the con�dence that the global optima have

been obtained. In this example, the actuator jerk limits are very high. Hence, the trajectory

is determined by the limits on the actuator torques and the increase in motion time is very small

compared to the PCTOM: 1:91 seconds compared to 1:72 seconds. Although one would expect both
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(a) SPCTOM trajectory in the
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(b) Actuator torques.
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(c) Actuator jerks.

Figure 4.2: SPCTOM for the elbow manipulator along the parabolic path - Example 1 (medium
jerk limits).
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(a) SPCTOM trajectory in the
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(b) Actuator torques.
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(c) Actuator jerks.

Figure 4.3: SPCTOM for the elbow manipulator along the parabolic path - Example 2 (large jerk
limits).
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(b) Actuator torques.
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Figure 4.4: SPCTOM for the elbow manipulator along the parabolic path - Example 3 (low jerk
limits).
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trajectories to yield the same motion times, there are two reasons for the increase in motion time

for the SPCTOM: (i) the limitations of the parameterization chosen in the s� _s phase plane and

(ii) the signi�cant decrease in peak actuator jerks for SPCTOM (solid lines) compared to PCTOM

(dotted lines), as shown in Figure 4.5. The logarithmic pseudo-jerk scale in Figure 4.5 shows that

the peak PCTOM jerk is almost two orders of magnitude greater than the peak SPCTOM jerk.
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Figure 4.5: Actuator jerks for the SPCTOM in Example 2 (solid lines) and the PCTOM (dotted
lines) for the elbow manipulator along the parabolic path.

4.1.2 Circular Path

In this section, a second example is presented. This second example is used for two purposes:

(i) to illustrate a di�erent path; and (ii) to investigate the in
uence of the number of knot points

on the results of the optimization.

The robot is the same elbow manipulator as before, but the path is chosen to be a circular path
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given in parametric form as:

x(s) = 0:85� 0:65 � cos(5:5s+ 0:4)

y(s) = 0:65 � sin(5:5s+ 0:4) (4.2)

z(s) = 0:1

s = 0 : : : 1.

Again, the path is taken from [45], but is scaled such that the path parameter varies between 0

and 1.

The PCTOM in this example is shown in Figure 4.6. As shown in the �gure, there is only

one switching point. That is, the minimum time motion is bang-bang: accelerating with maximum

allowable acceleration and then decelerating with maximum allowable deceleration. The transversal

time of the PCTOM trajectory is t = 1:07 sec.

Following the methodology proposed in Chapter 3, the base trajectory representing the SPCTOM

consists of two cubics splined together at s = 0:496 along the Cartesian path and the vector of

optimization variables is:

x =

 
d _s
ds0

52:7

_s1
1:48

d _s
dsf

�53:07

!T

. (4.3)

The SPTOM trajectories are determined for all three actuator jerk limits in Table 2.2 following

the procedure outlined in the previous section. Namely, for each set of jerk limits, the optimization

is started with four di�erent initial guesses. The best trajectory is discarded and the other three

are used to restart the process. The results are given in Table 4.5. The PCTOM trajectory, the

SPCTOM trajectories, and the corresponding optimal actuator torques and jerks, are plotted in

Figures 4.7-4.10.

As Table 4.5 shows, the increase in motion time for the SPCTOM trajectory as compared to the

PCTOM trajectory is signi�cant. There are two factors that result in a SPCTOM that is slower

than the PCTOM: (i) the SPCTOM trajectory parameterization; and (ii) the substantially lower

peak actuator jerks for SPCTOM (Figure 4.11).
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Figure 4.6: PCTOM in the s� _s phase plane for the elbow manipulator along the circular path.

Table 4.5: Optimal motion times for the elbow manipulator along the circular path [sec].

Initial guess SPCTOM PCTOM

Medium jerk limits High jerk limits Low jerk limits

Example 1 Example 2 Example 3

1 t1 = 2:73 t2 = 1:56 t3 = 3:31

2 t1 = 2:14 t2 = 1:57 t3 = 2:91

3 t1 = 2:18 t2 = 1:57 t3 = 3:05 t = 1:07

4 t1 = 2:26 t2 = 1:59 t3 = 2:90

Restart t1 = 2:13 t2 = 1:57 t3 = 2:91
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(a) PCTOM trajectory in the s� _s
plane.
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Figure 4.7: PCTOM for the elbow manipulator along the circular path.
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(a) SPCTOM trajectory in the
s� _s plane.

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50

100

150

path parameter [m]

ac
tu

at
or

 to
rq

ue
s 

[N
m

]

Actuator 1
Actuator 2
Actuator 3

(b) Actuator torques.
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(c) Actuator jerks.

Figure 4.8: SPCTOM for the elbow manipulator along the circular path - Example 1 (medium jerk
limits).
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(a) SPCTOM trajectory in the
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(b) Actuator torques.
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Figure 4.9: SPCTOM for the elbow manipulator along the circular path - Example 2 (high jerk
limits).
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(a) SPCTOM trajectory in the
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(b) Actuator torques.

0 0.2 0.4 0.6 0.8 1
−1000

−800

−600

−400

−200

0

200

400

600

800

1000

path parameter [m]

ac
tu

at
or

 je
rk

s 
[N

m
/s

]

Actuator 1
Actuator 2
Actuator 3

(c) Actuator jerks.

Figure 4.10: SPCTOM for the elbow manipulator along the circular path - Example 3 (low jerk
limits).
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Figure 4.11: Peak actuator jerks for the SPCTOM (solid lines) and the PCTOM (dotted lines) for
the elbow manipulator along the circular path.

Since the SPCTOM trajectory is represented by only two cubics splined together, one can

consider whether the trajectory parameterization is adequate. To resolve this issue, two extra knot

points are chosen, located at equal distances from the path end points and the switching point.

Now, the optimal trajectory is approximated by four cubics and the vector of optimization variables

is:

x =

 
d _s
ds0

52:7

_s1
1:127

_s1
1:48

_s1
1:31

d _s
dsf

�53:07

!T

. (4.4)

The results obtained using this trajectory parameterization are given in Table 4.6. The SPCTOM

trajectories for all three actuator jerk limits are plotted in Figures 4.12-4.14.

Table 4.6: Optimal motion times for the elbow manipulator along the circular path when additional
knot points are inserted [sec].

Initial guess SPCTOM PCTOM

Medium jerk limits High jerk limits Low jerk limits

Example 1 Example 2 Example 3

1 t1 = 1:97 t2 = 1:46 t3 = 2:83

2 t1 = 2:00 t2 = 1:33 t3 = 2:92

3 t1 = 2:02 t2 = 1:30 t3 = 2:92 t = 1:07

4 t1 = 2:15 t2 = 1:33 t3 = 2:73

Restart t1 = 1:97 t2 = 1:29 t3 = 2:73
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(a) SPCTOM trajectory in the
s� _s plane.

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50

100

150

path parameter [m]

ac
tu

at
or

 to
rq

ue
s 

[N
m

]

Actuator 1
Actuator 2
Actuator 3

(b) Actuator torques.
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(c) Actuator jerks.

Figure 4.12: SPCTOM for the elbow manipulator along the circular path (additional knot points
inserted) - Example 1 (medium jerk limits).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

path parameter [m]

ps
eu

do
−

ve
lo

ci
ty

 [m
/s

]

SMVLC 
PCTOM 
SPCTOM

(a) SPCTOM trajectory in the
s� _s plane.
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(b) Actuator torques.
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(c) Actuator jerks.

Figure 4.13: SPCTOM for the elbow manipulator along the circular path (additional knot points
inserted) - Example 2 (high jerk limits).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

path parameter [m]

ps
eu

do
−

ve
lo

ci
ty

 [m
/s

]

SMVLC 
PCTOM 
SPCTOM

(a) SPCTOM trajectory in the
s� _s plane.
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(b) Actuator torques.

0 0.2 0.4 0.6 0.8 1
−3000

−2000

−1000

0

1000

2000

3000

path parameter [m]

ac
tu

at
or

 je
rk

s 
[N

m
/s

]

Actuator 1
Actuator 2
Actuator 3
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Figure 4.14: SPCTOM for the elbow manipulator along the circular path (additional knot points
inserted) - Example 3 (low jerk limits).
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The results in Table 4.6 show that the SPCTOM trajectory is better parameterized by more

that two cubics. In view of this, it is recommended that at least three knot points are used when

computing the SPCTOM. By doing so, the limitations involved in the trajectory parameterization

are reduced while the increase in the computational cost is negligible.

4.2 Discussion

Motion times for both the PCTOM and the SPCTOM for all three examples presented in

Sections 4.1.1 and 4.1.2 are summarized in Table 4.7.

Table 4.7: PCTOM and SPCTOM motion times for the examples in Sections 4.1.1 and 4.1.2 [sec].

Parabolic path Circular path

PCTOM SPCTOM PCTOM SPCTOM

One knot Three knots

medium high low medium high low medium high low

1 2 3 1 2 3 1 2 3

1.72 2.74 1.91 3.92 1.07 2.13 1.57 2.90 1.97 1.29 2.72

From the results from Table 4.7 and other simulation examples run during the course of this

research, the following conclusions can be drawn:

� The SPCTOM trajectory parameterization is adequate when knot point locations are the

same as the PCTOM switching point locations if the PCTOM has more than one switching

point. If the PCTOM has only one switching point, using two additional knot points (equally

spaced between the path end points and the switching point) results in an improved trajectory

approximation.

� Bounding the actuator jerks yields increased motion time for the SPCTOM compared to the

PCTOM. The more restrictive the bounds are, the more signi�cant the increase in motion

time is.

� If the actuator jerk bounds are set su�ciently high, then the actuator torques become the

active constraints (as in the case of second set of bounds for the robot along the parabolic
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path, Figure 4.3(b)- 4.3(c)). The slight increase in motion time is then due to the smoothing

of the actuator torques.

4.3 SPTOM Performance Investigation

The in
uence of the actuator jerk bounds on the trajectory traversal time has been analyzed in

the previous section. Herein, their in
uence on the controller tracking performance is investigated

through simulations. As shown in the previous section, from a planning level perspective, the

smoothness of the trajectory has a negative impact on the motion time. That is, the higher the

actuator jerks are, the lower the motion time is, with the PCTOM trajectory being the fastest

possible motion given the limits on the actuator torques. These planning level results do not,

however, give an indication of the system performance, i.e., the tracking accuracy. Thus, it is not

possible to decide how to strike a balance between these con
icting requirements: namely, increased

task productivity, as re
ected in the transversal time, and good system performance, as re
ected

by the tracking accuracy. The following simulations address this issue.

Since the experiments reported in the following Chapter 5 are carried out on the SCORBOT ER

VII robot in the Industrial Automation Laboratory (IAL) at UBC, the simulations performed herein

use the same manipulator. Its model is built in Simulink using estimated dynamic parameters.

The SCORBOT ER VII Denavit-Hartenberg parameters are given in Table 4.8, while estimated

link masses and inertias are given in Table 4.9. Only the robot positional degrees of freedom are

considered. Hence, for the purpose of the simulations performed here, the SCORBOT ER VII is

considered a 3-dof elbow manipulator. The detailed dynamic model of the robot is presented in

Appendix B.

Table 4.8: The SCORBOT ER VII Denavit-Hartenberg parameters.

Link �[rad] d[m] a[m] �[rad]

1 �1 = 0 d1 = 0:3585 a1 = 0:050 �1 = ��
2

2 �2 = 0 d2 = �0:037 a2 = 0:300 �2 = 0

3 �3 = 0 d3 = 0:0 a3 = 0:250 �3 = 0

No parameter identi�cation has been performed because the high friction in the joints negates
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Table 4.9: SCORBOT ER VII estimated masses and inertias.
Mass [kg] Ix[kgm

2] Iy[kgm
2] Iz[kgm

2]

m1 = 0 Ix1 = 0:00 Iy1 = 0:05 Iz1 = 0:00

m2 = 6:6 Ix2 = 0:10 Iy2 = 0:60 Iz2 = 0:60

m3 = 4:2 Ix3 = 0:02 Iy3 = 0:20 Iz3 = 0:30

Table 4.10: Actuator torque and jerk bounds for the SCORBOT ER VII.

Torque limits Medium jerk limits High jerk limits Low jerk limits

Example 1 Example 2 Example 3

T [Nm] _T1[Nm=sec] _T2[Nm=sec] _T3[Nm=sec]

T1 = 10 _T11 = 100 _T12 = 1000 _T13 = 10

T2 = 10 _T21 = 100 _T22 = 1000 _T23 = 10

T3 = 10 _T31 = 100 _T32 = 1000 _T33 = 10

the possibility of obtaining accurate results (as determined by previous attempts1). Friction itself

has been modelled as Coulomb and viscous friction, with the Coulomb friction coe�cients 2:0[Nm]

and the viscous friction coe�cients 0:2Nmsec for all three links. While an accurate robot model

would yield better results, it is seldom the case in industrial practice that such a model is available.

Therefore, a comparison between the tracking accuracy for the PCTOM and the SPCTOM even

with a poor robot model is considered to have relevance.

The actuator torque limits were computed using data in the actuator manufacturer catalogue.

As before, the three sets of actuator jerk limits were set arbitrarily, Table 4.10.

The path is a straight line given in parametric form as:

x(s) = 0:4

y(s) = 0:3s� 0:1

z(s) = 0:2s+ 0:3 (4.5)

s = 0; : : : ; 1.

Since the PCTOM of the SCORBOT ER VII along this path has a single switching point (Fig-

ure 4.15), two additional knot points are used for parameterizing the SPCTOM trajectory. Along

the path, the three knot points are located at s = 0:25, s = 0:49, and s = 0:75 respectively. The

1S. Gu, UBC IAL, Personal communication
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Figure 4.15: PCTOM trajectory in the s � _s phase plane for the SCORBOT ER VII along the
linear path.

vector of optimization variables is:

x =

 
d _s
ds0

41:86

_s1
2:173

_s1
3:362

_s1
2:582

d _s
dsf

�55:65

!T

. (4.6)

A �fth trajectory used in simulations is a standard quintic trajectory. The motion time for the

quintic trajectory is given by [2]:

tq = maxftv; tag, (4.7)

where:

tv =
15d

8vmax
(4.8)

ta =

r
5:77

d

amax
, (4.9)

with d being the distance traveled by the end-e�ector during the motion and vmax and amax

the (estimated) maximum end-e�ector velocity and acceleration. Once the motion time has been
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determined, the quintic trajectory is found in parametric form by solving for the coe�cients in:

s(t) = a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t+ a0, (4.10)

by applying the boundary conditions:

s(0) = 0,

_s(0) = 0,

�s(0) = 0, (4.11)

s(tq) = 1,

_s(tq) = 0,

�s(tq) = 0.

The joint trajectories are then obtained by applying the inverse kinematics of the SCORBOT ER VII.

The motion times for the PCTOM trajectory, the SPCTOM trajectories corresponding to the

di�erent jerk limits, and the quintic trajectory are given in Table 4.11. In Figures 4.16-4.20, all

these trajectories are plotted in the s � _s phase plane together with the corresponding actuator

torques and jerks.

Table 4.11: PCTOM, SPCTOM, and quintic trajectory motion times for the SCORBOT ER VII
along the straight line path [sec].

PCTOM SPCTOM Quintic

1 2 3

0.59 0.735 0.7 1.5 2.0

A PID independent joint controller with position feedback is used to compare the tracking

performance for these trajectories. It has been tuned for each link individually [36] for critical

damping and a rise time of 200msec. The gains of the corresponding discrete time controller have

been then determined for a sampling frequency of 200Hz.

In the simulations, actuator torques saturate at 10Nm, which is the torque limit considered

during planning.

The tracking performance of the PID controller for all �ve trajectories is plotted in Figure 4.21,
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Figure 4.16: PCTOM for the SCORBOT ER VII along the linear path.
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Figure 4.17: SPCTOM for the SCORBOT ER VII along the linear path (additional knot points
inserted) - Example 1 (medium jerk limits).
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Figure 4.18: SPCTOM for the SCORBOT ER VII along the linear path (additional knot points
inserted) - Example 2 (high jerk limits).
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(b) Actuator torques.
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Figure 4.19: SPCTOM for the SCORBOT ER VII along the linear path (additional knot points
inserted) - Example 3 (low jerk limits).

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

path parameter [m]

ps
eu

do
−

ve
lo

ci
ty

 s
[m

/s
ec

]

SMVLC  
PCTOM  
Quintic

(a) Quintic trajectory in the s� _s
plane.
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(b) Actuator torques.
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Figure 4.20: Quintic trajectory for the SCORBOT ER VII along the linear path.

while the planned and simulated actuator torques are plotted in Figures 4.22-4.26.

As seen in Figure 4.21, due to actuator torque saturation, the controller cannot keep the end-

e�ector on the path when the actuator jerks are too high. This is the case with the PCTOM

trajectory and the SPCTOM trajectories corresponding to actuator jerk limits of 100Nm/sec and

1000Nm/sec (labeled 'spctom1' and 'spctom2', respectively, in Figure 4.21). This result shows

that actuator jerk limits are extremely important for the ability of the system to track a planned

trajectory, especially in the face of poorly modelled system dynamics. As expected, the smoother

the trajectory, i.e., the lower the actuator jerk limits, the higher the tracking accuracy of the

controller.

Comparing the SPCTOM trajectory to the PCTOM and the quintic trajectories, the following
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Figure 4.21: Controller tracking performance for the PCTOM, quintic, and SPCTOM trajectories.
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Figure 4.22: Desired and simulated torques for the PCTOM trajectory.
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Figure 4.23: Desired and simulated torques for the SPCTOM trajectory - Example 1 (medium jerk
limits).

0 0.1 0.2 0.3 0.4 0.5 0.6
−10

0

10

to
rq

ue
 2

[N
m

]

0 0.1 0.2 0.3 0.4 0.5 0.6
−10

0

10

time [sec]

to
rq

ue
 3

[N
m

]

0 0.1 0.2 0.3 0.4 0.5 0.6
−10

0

10

to
rq

ue
 1

[N
m

]

planned  
simulated

Figure 4.24: Desired and simulated torques for the SPCTOM trajectory - Example 2 (high jerk
limits).
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Figure 4.25: Desired and simulated torques for the SPCTOM trajectory - Example 3 (low jerk
limits).
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Figure 4.26: Desired and simulated torques for the quintic trajectory.
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conclusions can be drawn:

� While the PCTOM trajectory represents the theoretical optimal motion when actuator torque

limits are imposed, it is not feasible for direct implementation on a poorly modelled system

with an unsophisticated controller, since it cannot be tracked by such a controller. On the

other hand, the SPCTOM trajectory, while maintaining a measure of optimality, can also be

tracked by the controller. Thus, it represents a feasible time-optimal motion.

� Evaluated against the quintic trajectory, the SPCTOM trajectory yields an improved motion

time for comparable controller tracking performance. This shows that �xed actuator jerk

limits are a much better way of de�ning optimal smooth trajectories over quintics with �xed

velocity and acceleration limits. The reason for this is that jerk limits are actuator related

and position independent, whereas the velocity and acceleration capabilities of the robot are

con�guration dependent, thus the limits imposed on them are worst case limits.

� Actuator jerks also represent a measure of the actuator torque smoothness. The lower the

jerks are, the smoother the torques become. Thus, based on the relationship between torque

smoothness and robot and actuator strain, [8], lower jerks also result in decreased system

strain and wear.

4.4 Summary

In this chapter, two objectives were pursued. First, the methodology proposed in Chapter 3

for planning an SPCTOM trajectory was demonstrated. Second, the performance of the SPCTOM

trajectory compared to the PCTOM and to a quintic trajectory was investigated.

The examples presented in Section 4.1 show that the FTM is adequate for planning SPCTOM

trajectories. This conclusion is drawn from the fact that there is only a slight increase in the

motion time of the SPCTOM with high jerk limits compared to the motion time of the PCTOM.

The increase is attributed to the chosen trajectory parameterization in the phase plane, as well as

to the decrease in actuator jerks. Thus, it is expected that the FTM has converged to near the

global optimum for the SPCTOM and that the methodology proposed in Chapter 3 is suitable for

planning SPCTOM trajectories.
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The limitations involved in selecting a number of knot points equal to the number of switching

points of the related PCTOM trajectory were investigated in Section 4.1 through an example. The

example demonstrates that the parameterization of the SPCTOM trajectory in the phase plane by

only two cubics is inadequate. Therefore, it is proposed that two additional knot points be inserted,

since the added computational burden is negligible.

In section 4.3, the performance of the SPCTOM trajectory is compared to that of the PCTOM

and quintic trajectories through simulations. These simulations show that, while limited actuator

jerks have a negative in
uence on motion time, they need to be imposed in order to ensure the

required tracking accuracy when the available system model is poor. While sophisticated controllers

might track the PCTOM trajectory of an accurately identi�ed system, it is shown that in this

case the PID independent joint controller often used in industrial practice cannot keep the end-

e�ector of an approximately modelled robot along the path. Practically, it is di�cult to obtain

an accurate manipulator model and most systems are controlled by PID controllers. Therefore,

imposing actuator jerk limits and planning SPCTOM trajectories accordingly results in the planning

of feasible time optimal motions.

Actuator jerk limits not only make the SPCTOM trajectories readily implementable on a ma-

nipulator, they are also a better way of de�ning the optimal trajectory smoothness over quintics

with global velocity and acceleration limits, because they are actuator dependent and con�guration

independent.

In conclusion, the SPCTOM trajectory represents a balance between the con
icting require-

ments of minimum motion time and speci�ed tracking accuracy: it results in lower motion time

compared to a quintic trajectory with similar tracking performance and, though slower that the

PCTOM trajectory, it can be tracked by a typical industrial controller.



Chapter 5

Experiments

In chapter 4, the SPCTOM trajectory was compared with the PCTOM and quintic trajectories

through simulations. In this chapter, the same comparison is done through experiments performed

on the SCORBOT ER VII manipulator in the IAL at UBC.

As previously stated, the view taken in this work and justi�ed by simulations is that a desired

degree of trajectory smoothness, which directly re
ects upon system tracking performance, can

be imposed through limits on the actuator jerks. This smoothness can compensate for modelling

inaccuracies and thus feasible time optimal trajectories can be determined. These are trajectories

that are readily implementable in an industrial setting, i.e., on a manipulator for which an accurate

model is di�cult to obtain and which is controlled by a PID independent joint controller. The goal

of the present chapter is to provide the experimental proof of this assertion, while investigating

appropriate jerk limits for practical applications.

5.1 Experimental Setup

The experimental setup used to test the di�erent trajectories is a SCORBOT ER VII 5-dof

robot in the IAL at UBC (Figure 5.1). The robot is controlled by a TMS320C32 DSP board,

interfaced with two axis control cards, each capable of handling three axes simultaneously. An

open architecture real-time operating system (ORTS) [21] is used in the implementation of the

control algorithm and in reading the pre-planned trajectories and feeding them to the control loop

72
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at the controller frequency. The axis control cards and the real-time operating system ORTS were

developed in-house by the Manufacturing Automation Laboratory, UBC. For the purpose of the

experiments reported here, only the positional degrees of freedom of the robot are considered, thus

the robot is treated as a 3-dof elbow manipulator with the DH parameters given in Table 4.8. A

tuned discrete PID algorithm is used to provide the control law. This setup simulates typical condi-

tions in industry, where the robot is equipped with a closed architecture discrete PID independent

joint controller.

Figure 5.1: Experimental setup.

5.2 Experimental Results

The PCTOM, SPCTOM, and quintic trajectories were all implemented on the SCORBOT ER VII

and the encoder readings, as well as the actuator control voltages and output currents were recorded.

The results of the experiments are plotted in Figures 5.2-5.6, and summarized in Table 5.1.
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Figure 5.2: Experimental results for the PCTOM trajectory implemented on the
SCORBOT ER VII.
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Figure 5.3: Experimental results for the SPCTOM trajectory (Example 1 - jerk limits of
100Nm/sec) implemented on the SCORBOT ER VII.
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Figure 5.4: Experimental results for the SPCTOM trajectory (Example 2 - jerk limits of
1000Nm/sec) implemented on the SCORBOT ER VII.
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Figure 5.5: Experimental results for the SPCTOM trajectory (Example 3 - jerk limits of 10Nm/sec)
implemented on the SCORBOT ER VII.
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Figure 5.6: Experimental results for the quintic trajectory implemented on the SCORBOT ER VII.

Table 5.1: Experimental results for the PCTOM, SPCTOM, and quintic trajectories.

Trajectory Jerk Motion Maximum RMS RMS RMS

limits time tracking tracking tracking tracking

[Nm/sec] [sec] error error 1 error 2 error 3

[cm] [o] [o] [o]

PCTOM 1 4:0 14:0 17:5 3:1 15:8

SPCTOM 1 1000 4:0 13:4 17:2 2:8 14:8

SPCTOM 2 100 4:0 12:5 15:9 2:6 14:8

SPCTOM 3 10 1:5 3:1 2:6 1:9 1:5

Quintic 7 2:0 2:5 2:3 1:8 1:4
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These experimental results support the results from Chapter 4. Namely, for high actuator jerk

limits, the controller cannot keep the end-e�ector on the path. Figures 5.2, 5.3, and 5.4 show

that trajectories with high jerks result in increased tracking errors, which, in turn, activate the

controller, saturating the actuators. Whenever this happens, the end-e�ector leaves the path.

Such a trajectory is an infeasible trajectory. For the case of the SCORBOT ER VII manipulator,

actuator jerk limits more than an order of magnitude higher than actuator torque limits are not

su�cient to ensure that the end-e�ector follows the planned path. While this result was not

predicted by the simulations, it does not, however, present itself as totally unexpected. Due to the

large errors involved in modelling the system, one would expect that the simulation results would

overestimate the system capabilities.

The experimental performance of the SPCTOM trajectory corresponding to the low jerk limits,

i.e. 10Nm/sec, is similar to its simulated performance. Thus, while being tracked by the controller

with the same accuracy and the same e�ort as the quintic trajectory, it results in reduced motion

time. This indicates that actuator jerk limits are preferable when determining smooth time optimal

motions over global velocity and acceleration limits.

The SPCTOM trajectories above suggest that, for the SCORBOT ER VII, realistic jerk limits

are approximately equal to the actuator torque limits. To verify this proposition, SPCTOM tra-

jectories were determined for jerk limits of 50Nm/sec and 20Nm/sec and the robot was required

to follow them. As seen in Figures 5.7 and 5.8, the jerk limits of 50Nm/sec are still too high for

the system tracking capabilities. The SPCTOM trajectory corresponding to the 20Nm/sec limits

results in lower motion time and slightly decreased tracking performance.
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Figure 5.7: Experimental results for the SPCTOM trajectory (jerk limits of 20Nm/sec) implemented
on the SCORBOT ER VII.
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Figure 5.8: Experimental results for the SPCTOM trajectory (jerk limits of 50Nm/sec) implemented
on the SCORBOT ER VII.

5.3 Summary

In this chapter, experimental results obtained when implementing the PCTOM, SPCTOM cor-

responding to di�erent jerk limits, and quintic trajectories were presented. These results con�rmed

that the actuator jerk limits are instrumental in determining feasible time optimal trajectories when

an accurate dynamic model of the system is not available. They also demonstrated that trajectory

smoothness is directly related to the tracking performance of the controller.

No speci�c rules were obtained for how to choose appropriate jerk limits. However, the ex-

periments have shown that these limits should be fairly conservative when applied to inaccurately

modelled systems. Thus, actuator jerk limits can compensate for large model errors. The trade-o�

is an increase in motion time.



Chapter 6

Conclusions and Recommendations

6.1 Summary

In this thesis, a strategy for planning SPCTOM trajectories has been presented. These time

optimal trajectories are determined by imposing actuator jerk limits on the proposed motion. Such

trajectories can be directly implemented on an industrial robot when the dynamic parameters are

not accurately known, without the need for a sophisticated controller. They represent, therefore,

feasible time optimal motions.

The SPCTOM trajectories provide a practical compromise between the need for shorter manip-

ulation task completion times and the need for increased tracking accuracy and decreased vibrations

of the robot system.

Previous planning strategies have incorporated the smoothness requirement as smoothness of

the joint space trajectory and have imposed limits on the joint velocities, accelerations, and jerks

or on the end-e�ector velocity and acceleration. In this thesis, the trajectory smoothness is de�ned

in the phase space and limits on the actuator jerks are used in the planning approach.

The solution proposed for determining SPCTOM trajectories consists in transforming the TOC

problem into a nonlinear parameter optimization problem and solving it using the FTM in [27].

The adequacy of this optimization technique is shown by setting the jerk limits very high and

showing that the SPCTOM trajectory converges towards the PCTOM trajectory, within the limits
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of the chosen trajectory parameterization.

While the negative e�ect of lowering the actuator jerk limits on the motion time is visible

from the planning stage, the in
uence of the jerk limits on the trajectory feasibility is studied

through simulations and experiments. Both demonstrate that a trajectory which requires high

actuator jerks is not a feasible trajectory for a poorly modelled system controlled by a simple

PID independent joint controller. SPCTOM trajectories, however, represent feasible time optimal

motions and therefore they have industrial relevance. Moreover, the limits on the actuator jerks

are related to the tracking performance of the controller and the control e�ort of the actuators.

The simulations and the experiments are also conducted with the goal of comparing the SPCTOM

trajectory to the smooth quintic trajectories. The results are favourable to the SPCTOM trajec-

tory: for similar actuator jerks and controller e�ort for both trajectories, the SPCTOM trajectory

is characterized by a signi�cantly shorter motion time. This result shows that SPCTOM trajecto-

ries with �xed actuator jerk limits provide a superior method of de�ning optimal smooth motions

over quintics with �xed velocity and acceleration limits. This is due to the fact that velocity and

acceleration limits are position dependent and, therefore, are determined for the worst case sce-

nario. The actuator jerk limits, on the other hand, are position independent. Thus, they represent

a uniform measure for the trajectory smoothness over the entire robot workspace.

The disadvantage of planning a SPCTOM trajectory over planning a quintic trajectory is the

required computational e�ort. While an optimal quintic involves practically no computational load,

a SPCTOM is planned through a nonlinear optimization and requires considerable computational

e�ort. Therefore, at this stage, the SPCTOM trajectory can only be used when the planning is

done o�-line.

6.2 Recommendations

In this thesis, SPCTOM trajectories with limited actuator jerks were proven to represent feasible

trajectories even for a system with roughly estimated dynamic parameters controlled by an unso-

phisticated PID controller, being therefore readily implementable in any robotic system. Moreover,

they compared favourably to the optimal quintic trajectories. However, several research directions

which could improve the present work immediately suggest themselves. They are presented herein.
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(1) At the theoretical level, one could investigate the optimality conditions for the SPCTOM.

This could potentially lead to the derivation of an algorithm for computing SPCTOM similar to

that presented in [5] for computing the PCTOM. The advantage of such an e�cient search would be

its much lower computational requirements, which would make SPCTOM trajectories suitable for

on-line planning. This would considerably increase the practical signi�cance of such trajectories,

since they could be used in planning any path-constrained manipulation task.

(2) At the experimental level, one could investigate the selection of the actuator jerk limits.

The research reported here indicates that they should be in the same range as the actuator torque

limits. However, more work is required to determine whether they are only actuator dependent

or they are also in
uenced by factors like model inaccuracies or friction. All these are reasonable

assumptions and they need to be veri�ed by experimental research.

(3) Finally, one could investigate how jerk limits can be directly related to robot vibrations

and wear. This correlation might be di�cult to establish, since it entails developing a reasonably

easy to use measure for vibrations and their in
uence on robot wear. Furthermore, it could require

longitudinal studies with access to working industrial robots. Nevertheless, it would provide an

objective basis for determining what the optimal task productivity should be when both short

term and long term consequences would be considered.

The research directions outlined here would be challenging and they would contribute to de�ning

task time optimality in a more realistic way, with a more careful consideration for the physical

limitations of a robotic system. To various degree, they would also contribute to the OCT, as well

as to the problem of on-line time-optimal trajectory planning.
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Appendix A

The Flexible Tolerance Method

The Flexible Tolerance Method FTM was introduced by Paviani and Himmelblau [44]. The

detailed description of the algorithm and its concepts is given in [27]. Herein, an overview of

the method is presented along with the details of its implementation for the SPCTOM trajectory

planning problem.

In this appendix, the symbols used within the main body of the thesis are overloaded. This is

done in order to maintain the common mathematical notation. All symbols are rede�ned as they

are used, but the de�nitions apply only to this appendix.

A.1 Overview of the FTM

Using the FTM, the general optimization problem is:

Minimize: f(x) x 2 Rn (A-1)

Subject to: hi(x) = 0 i = 1; :::; l (A-2)

gi(x) � 0 i = l + 1; :::;m, (A-3)

where f(x) is the objective function, hi(x) are the equality constraints, gi(x) are the inequality

constraints, and Rn is the n-dimensional space where x lies. This problem is reformulated into the
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following, simpler but equivalent problem with only one constraint:

min: f(x) x 2 Rn (A-4)

subject to: �(k) � T (x) � 0, (A-5)

where �(k) is the value of the 
exible tolerance criterion at the kth stage of the optimization.

This criterion also serves as the stopping condition for the search. The cost function f(x) and the

equality and inequality constraints in Equations (A-2) and (A-3) may be linear and/or non-linear

functions of the variables in x. The basic strategy of the method is to improve the value of the

cost function by using information provided by feasible points, as well as certain nonfeasible points

called near-feasible points. The limits on the near-feasibility are made more restrictive as the

search advances until, in the limit, only feasible points are accepted. As a result of this strategy,

the algorithm does not spend a considerable portion of computation time on satisfying rigorous

feasibility constraints and its computational e�ciency is greatly improved.

In (A-5), T (x) is a positive functional of all the equality and/or inequality constraints of the

original problem and it is used as a measure of the constraint violation, while � is selected as a

positive decreasing function of the x points in Rn. Thus, � serves as both a limit on the constraint

violation throughout the search and as a criterion for the termination of the search.

The tolerance criterion is used to categorize points in Rn. At the k-th stage of the optimization,

a point x(k) is said to be:

1. Feasible, if T (x) = 0

2. Near-feasible, if 0 � T (x) � �(k)

3. Nonfeasible, if T (x) > �(k).

A small value of T (x(k)) implies that x(k) is relatively near to the feasible region, and a large value

of T (x(k)) implies that x(k) is relatively far from the feasible region.

The region of near-feasibility is therefore de�ned by:

�(k) � T (x) � 0. (A-6)

On a transition from x(k) to x(k+1), the move is said to be feasible if 0 � T (x(k+1)) � �(k), and
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nonfeasible if �(k) < T (x(k+1)).

The 
exible polyhedron method (FPM) of Nelder and Mead [42] is used to minimize f(x) when

the constraint (A-5) is not active. The general idea is to reduce �(k) as the search progresses, thus

tightening the near-feasibility region, and to segregate the minimization of f(x) from the steps

taken to satisfy the constraint (A-5). For a given value of �(k), the value of T (x) at x(k+1) will be:

� either T (x(k+1)) � �(k), in which case x(k+1) is either a feasible or near-feasible point and

the move is accepted as a permitted move;

� or T (x(k+1)) > �(k), in which case x(k+1) is nonfeasible and a point x in the feasible or

near-feasible region must be found in lieu of x(k+1).

It is possible to use the same minimization technique for replacing an infeasible x(k+1) with a

feasible point, but any algorithm that achieves this purpose is su�cient.

In summary, the FTM is a nonlinear constraint optimization technique in which all equality and

inequality constraints are transformed into one single inequality constraint. This constraint de�nes

the near-feasibility limit at each stage of the optimization. The algorithm improves the value of the

cost function using the FPM as the \outer" optimization when the constraint is not active. When

the FPM generates an infeasible point (the constraint becomes active), the FTM algorithm uses

another \inner" optimization to replace it with a feasible or near-feasible point. The strategy is to

progressively tighten the near-feasibility region and to separate the two optimizations.

A.2 Overview of the FPM

The Flexible Polyhedron Method, FPM [42], is brie
y presented here since it is used in the

implementation of the FTM, as the \outer", unconstrained optimization.

The FPM is an unconstrained multi-dimensional minimization which requires only function

evaluations. In advancing the search, the method uses information about the value of the objective

function at some points called the vertices of the polyhedron. In an n-dimensional search space,

information about n+ 1 points is needed.

The polyhedron is a geometrical �gure consisting of n+ 1 points and all their interconnecting

line segments, polygonal faces, etc. At any stage of the optimization, the polyhedron encloses a

�nite n-dimensional volume.
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The algorithm replaces the point with the largest value of the objective function (\highest"

point) with a lower point. One stage of the search consists of the following steps:

� The highest point is re
ected through the centroid of the remaining n points and the re
ection

point is kept if it is higher than the lowest point but lower than at least two other points.

� If the re
ection point is lower than the lowest point, it is expanded in the same direction. The

expansion point is kept if it is lower than the lowest point. Otherwise, the re
ection point is

kept.

� If the re
ection failed, the highest point is contracted toward the centroid and the contraction

point is kept if it is lower than the highest point.

� If contraction failed, all points are pulled around the lowest (best) point.

Thus, the polyhedron tends to conserve its volume, but it might expand when a good search

direction is found, or it might contract when it reaches a \valley 
oor".

The search is initialized by providing it with n+ 1 points and it is stopped when the decrease

in the objective function value is smaller than some predetermined tolerance.

A.3 Implementation Details

The details of the FTM implementation for computing SPCTOM trajectories are presented

herein. All the references will be made to the elbow manipulator in Table 2.1 along the parabolic

path (2.1) and �gures related to this example will be used to illustrate the notation.

As explained in Chapter 3, the vector of optimization variables is:

x =

 
d _s
ds0

d _s
dsm;0

_s1
_sm;1

� � �
_sp
_sm;p

d _s
dsf

d _s
dsm;f

!T

. (A-7)

As shown in Figure 3.3, for the chosen example, p = 5, i.e., there are 5 switching points in the

PCTOM, and the dimension of the space to be searched is n = 7.

The objective function f(x) is the motion time. It is computed assuming that the pseudo-jerk is

controlled and is kept constant over each step. Thus, if two consecutive points along the trajectory

are considered, then the time taken by the manipulator to move from si, _si, �si to si+1, _si+1, �si+1
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is determined by solving the system:

_si+1 = _si + �si � t+

...
s i � t

2

2
(A-8)

si+1 = si + _si � t+
�si � t

2

2
+

...
s i � t

3

6
, (A-9)

where t and
...
s i are considered unknown. The state is then updated according to:

�si+1 = �si +
...
s i � t. (A-10)

The inequality constraints (A-3) for the problem of SPCTOM are de�ned as:

g4(i�1)+1(x) = 1�max
_s(s)

Ti
Tmax;i

, (A-11)

g4(i�1)+2(x) = 1�max
_s(s)

Ti
Tmin;i

, (A-12)

g4(i�1)+3(x) = 1�max
_s(s)

_Ti
_Tmax;i

, (A-13)

g4(i�1)+4(x) = 1�max
_s(s)

_Ti
_Tmin;i

, (A-14)

where i takes values from 1 to dof, the number of degrees of freedom of the manipulator. This

de�nition ensures that whenever any of the joint torques and/or joint jerks exceeds its limits, the

respective constraint becomes negative. For the case presented in Section 3.3.2, Figure 3.4, the

robot is an elbow manipulator and only the positional degrees of freedom are considered; therefore

dof= 3.

The inequality constraints gi(x) � 0; i = 1; : : : ; 4� dof, with gi(x) de�ned by Equations (A-

11)-(A-14), represent a direct enforcement of the actuator torque and jerk constraints (2.38) and

(2.32). The actuator constraints are used directly instead of the state constraints (2.63)-(2.64) and

the control constraints (2.65) to simplify the computation.

T (x) is a positive functional of all the equality and/or inequality constraints. It is de�ned as:

T (x) =

8>><
>>:
maxi(1� gi(x)) if 9i such that gi(x) � 1

0 otherwise.

(A-15)
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This de�nition di�ers from the one in [27]. In [27], T (x) is de�ned as:

T (x) =

"
mX
i=1

h2i (x) +
mX

i=l+1

Uig
2
i (x)

#1=2
, (A-16)

where Ui is the Heaviside operator such that Ui = 0 for gi(x) � 0 and Ui = 1 for gi(x) < 0.

Therefore, if
Pl

i=1 h
2
i (x) is convex and the gi(x); i = l + 1 : : : ;m; are concave functions, then

T (x) is a convex function with a global minimum at T (x) = 0. Since for the SPCTOM problem

the inequality constraints are not analytic functions, but can only be computed numerically, no

information is available about their convexity. Then, the advantage of Equation (A-16) as the

de�nition of T (x) is lost. Equation (A-15), on the other hand, is easier to compute and interpret.

In the implementation presented here, the tolerance criterion � is selected to be:

�(k) = minf�(k�1);�

n+1X
i=1

kx
(k)
i � x

(k)
centrkg (A-17)

with � a constant that is appropriately chosen, and x
(k)
centr the centroid of the polyhedron after

the elimination of the point with the highest value of the cost. The initial value of the tolerance

criterion, �0, is set to 0:2. Thus, the tolerance criterion is a positive non-increasing function of the

sequence of points x(0);x(1); : : : ;x(k); : : : ;x� generated during the progression of the search.

Unlike the implementation of the FTM in [27] (where the FPM is used for both the outer and

the inner optimizations), the strategy for the inner optimization used herein (that is, for replacing

an infeasible point by a feasible or near-feasible one) is a simple line search through bisection. The

choice is justi�ed by the high computational cost involved in the motion time and the constraint

evaluations. Depending on which point became infeasible, the line search is performed as follows:

� If a re
ection yielded the infeasible point, the line from the infeasible vertex toward the one

from which it resulted is searched. The search stops before the centroid (in order to preserve

search space dimension). This situation is schematically depicted in Figure A.1(a) for a

polyhedron with three vertices.

� If an extension yielded the infeasible point, the line from the infeasible vertex toward the

re
ected one is performed. The search stops at the re
ected point (Figure A.1(b)).

� If a contraction yielded the infeasible point, the line from the infeasible vertex toward the one
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from which it resulted is performed (Figure A.1(c)).

� If more vertices became infeasible as the result of a collapse or a change in the tolerance crite-

rion, each infeasible vertex is moved toward the origin. As vertices closer to origin represent

slower motions, this strategy is guaranteed to �nd feasible points. However, the move is not

performed through bisection, but in small steps with predetermined length (Figure A.1(d)).

h c r

(a) Infeasible re
ection.

h c
r exp

(b) Infeasible expansion.

h

c

contr

(c) Infeasible contrac-
tion.

h c

infeasible

(d) Infeasible vertex due
to a change in the toler-
ance.

Figure A.1: The line searches during the replacement of the di�erent types of infeasible points
generated by the FPM.

The algorithm of the FTM as implemented for the SPCTOM problem is presented in Figures A.2

and A.3. The terminology is the one used in the FPM of Nelder and Mead [42].
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Figure A.2: Flow diagram of the FTM for the SPCTOM problem - Part 1.
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Figure A.3: Flow diagram of the FTM for the SPCTOM problem - Part 2.



Appendix B

Robot Dynamic Models

In the simulations presented in Chapter 4, two manipulators are used: (i) the elbow manipulator

in [45] and (ii) the SCORBOT ER VII in the IAL. The dynamic models of these robots are detailed

in this appendix.

As shown in Chapter 2, the manipulator Lagrangian dynamics is given by:

M(q) � �q+ _qT �C(q) � _q+G(q) = T, (B-1)

where q 2 Rn is the vector of joint positions,T 2 Rn is the vector of actuator torques,M(q) 2 Rn�n

is the inertia matrix of the manipulator, C(q) 2 Rn�n�n is a third order tensor representing

the coe�cients of the centrifugal and Coriolis forces, G(q) 2 Rn is the vector of gravity terms,

and _ denotes the derivative with respect to time.

The third order dynamics, needed in order to incorporate the actuator jerks, is derived from

Equation (B-1) by di�erentiation with respect to time:

M(q) �
...
q + _M(q) � �q+ �qT �C(q) � _q+ _qT � _C(q) � _q+ _qT �C(q) � �q+ _G(q) = _T. (B-2)

Equations (B-1) and (B-2) show that the robot model is known if the inertia matrix, the Christof-

fel symbols, and the gravity terms are known. All the other terms involved in Equations (B-1)-(B-2)

are derived by di�erentiation with respect to time.

95
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B.1 Elbow Manipulator Dynamic Model

The dynamic parameters of the elbow manipulator in [45] are given in Table 4.1. Using them, the

inertia matrix, the Christo�el symbols, and the gravity terms are computed and given hereafter.

The non-zero components of the inertia matrix, M(q), are:

M11 = 1:89cq3 + 8:4455 + 2:4295c2q2 + 1:89c2q2+q3 + 0:896c2q2+2q3 (B-3)

M22 = 3:78cq3 + 6:7771 (B-4)

M23 = 1:89cq3 + 1:812 (B-5)

M32 = 1:89cq3 + 1:812 (B-6)

M33 = 1:812, (B-7)

where cq is a notation for cos(q).

The Christo�el symbols are computed from the inertia matrix, according to:

Cijk =
1

2

�
@Mij

@qk
+

@Mik

@qj
�

@Mjk

@qi

�
. (B-8)

Performing all the calculations, the non-zero Christo�el symbols are obtained as:

C112 = �1:89s2q2+q3 � 0:896s2q2+2q3 � 2:4295s2q2 (B-9)

C113 = �0:945s2q2+q3 � 0:896s2q2+2q3 � 0:945sq3 (B-10)

C121 = �1:89s2q2+q3 � 0:896s2q2+2q3 � 2:4295s2q2 (B-11)

C113 = �0:945s2q2+q3 � 0:896s2q2+2q3 � 0:945sq3 (B-12)

C211 = 1:89s2q2+q3 + 0:896s2q2+2q3 + 2:4295s2q2 (B-13)

C223 = �1:89sq3 (B-14)

C232 = �1:89sq3 (B-15)

C233 = �1:89sq3 (B-16)
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C311 = 0:945s2q2+q3 + 0:896s2q2+2q3 + 0:945sq3 (B-17)

C322 = �1:89sq3 , (B-18)

where sq is a notation for sin(q).

Finally, the non-zero components of the vector of gravity terms are:

G2 = 66:5118cq2 + 24:7212cq2+q3 (B-19)

G3 = 24:7212cq2+q3 . (B-20)

B.2 SCORBOT ER VII Dynamic Model

The DH and dynamic parameters of the �rst three links (positional dof) of the SCORBOT ER VII

in the IAL are given in Tables 4.8 and 4.9, respectively. Using them, after performing all the

required calculations, the elements of the inertia matrix of the SCORBOT ER VII are:

M11 = 0:1575c2q2+q3 + 0:033cq2 + 0:1575cq3 + 0:0478c2q2+2q3 + 0:27725c2q2 +

0:0525cq2+q3 + 0:9499 (B-21)

M12 = �0:019sq2+q3 � 0:012sq2 (B-22)

M13 = �0:019sq2+q3 (B-23)

M21 = �0:019sq2+q3 � 0:012sq2 (B-24)

M22 = 0:315cq3 + 0:94 (B-25)

M23 = 0:1575cq3 + 0:1656 (B-26)

M31 = �0:019sq2+q3 (B-27)

M32 = 0:1575cq3 + 0:1656 (B-28)

M33 = 0:1656, (B-29)
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the non-zero elements of the Christo�el symbols are:

C112 = �0:1575s2q2+q3 � 0:0478s2q2+2q3 � 0:0165sq2 � 0:02625sq2+q3 � 0:27725s2q2 (B-30)

C113 = �0:07875s2q2+q3 � 0:0478s2q2+2q3 � 0:07875sq3 � 0:02625sq2+q3 (B-31)

C121 = �0:1575s2q2+q3 � 0:0478s2q2+2q3 � 0:0165sq2 � 0:02625sq2+q3 � 0:27725s2q2 (B-32)

C122 = �0:012cq2 � 0:019cq2+q3 (B-33)

C123 = �0:019cq2+q3 (B-34)

C131 = �0:07875s2q2+q3 � 0:0478s2q2+2q3 � 0:07875sq3 � 0:02625sq2+q3 (B-35)

C132 = �0:019cq2+q3 (B-36)

C133 = �0:019cq2+q3 (B-37)

C211 = 0:1575s2q2+q3 + 0:0478s2q2+2q3 + 0:0165sq2 + 0:02625sq2+q3 + 0:27725s2q2 (B-38)

C223 = �0:1575sq3 (B-39)

C232 = �0:1575sq3 (B-40)

C233 = �0:1575sq3 (B-41)

C311 = 0:07875s2q2+q3 + 0:0478s2q2+2q3 + 0:07875sq3 + 0:02625sq2+q3 (B-42)

C322 = 0:1575sq3 , (B-43)

and the non-zero components of the gravity vector result as:

G2 = �3:2373cq2 � 5:15cq2+q3 (B-44)

G3 = �5:15cq2+q3 . (B-45)


