
Date: 1/31/96 Number: 578 Revision: Original

Title: Building and Debugging ARX Programs using
Microsoft Visual C++4.0 Developer Studio

Key Words: Build, Debug, ARX, C++, Developer

Product: AutoCAD Source: K_V:pssr
Release: R13 Expires: N/A
Platform: WinNT Audience: Developers

Copyright: Autodesk Confidential: No Replaces: None

Autodesk

Building and Debugging ARX Programs using Microsoft
Visual C++ 4.0 Developer Studio

Introduction:
Microsoft is currently shipping Visual C++ version 4.0. Since AutoCAD
requires Visual C++ Version 2.1 or 2.2, which can be difficult to obtain,
this document will describe how to set the Visual C++ Version 4.0
compiler to work with the AutoCAD Runtime eXtension (ARX). Please
remember that the Microsoft Visual C++ Version 4.0 compiler is not
officially supported at this time. It will be in the future, but at the moment it
has not been fully tested. Should you have problems setting up Visual
C++ Version 4.0, please FAX a bug report form (from the back of the
AutoCAD Installation Guide), to your technical support representative.

The information in this document has been created using Windows NT
and Windows 95. The only supported development environment is
Windows NT. The Windows 95 environment should work, but problems in
your code can cause Windows 95 to act erratically especially under
debugging. Because of these problems we request that you do
development in Windows NT.

Building ARX with the MSVC++ 4.0 IDE
The first step in building an ARX application is to make a Project
Workspace. The Project contains all the settings and files that are use to
build the ARX application. ARX applications are Windows dynamic-linked
libraries (DLL), and therefore you must choose the Dynamic-Link Library
Project type (NOT using MFC) when creating the Project Workspace. A
minimum application would consist of: TEMPLATE.CC (renamed as
TEMPLATE.CPP), TEMPLATE.DEF and the libraries (RXAPI.LIB,
ACAD.LIB, ACEDAPI.LIB). During the project creation any .CPP or (.C),
RC, and DEF are added for your program.

NOTE: Unless your ARX program contains Windows specific code
that requires a .RC file, you will not need any .RC files.

The basic steps to create a minimum project are:
1. Start the Microsoft Visual C++ 4.0 Developer Studio. From the

"File" pulldown, select "New".

2. Select "Project Workspace" in the dialog that appears.

3. In the next dialog, enter your desired project name in the
appropriate edit box. Select "Dynamic-Link Library" as the project
type. Fill in the directory information as you desire. Then select
"Create".

4. Copy TEMPLATE.CC and TEMPLATE.DEF from the
\COM\ADSRX\SAMPLES directory to the directory you specified
for the project workspace in the previous step. Rename the
TEMPLATE.CC file to TEMPLATE.CPP.

5. Next you will need to choose your files for the project. From the
“Insert” pulldown, select “Files into Project.” Select the source (.C,
.CPP, etc.), definition (.DEF), resource (.RC), and library (.LIB)
files to use in your project. For this example choose
TEMPLATE.CPP and TEMPLATE.DEF which you already copied
to the project workspace directory. Also add the necessary ARX
libraries (RXAPI.LIB, ACAD.LIB, ACEDAPI.LIB) usually found in
the \COM\ADSRX\LIB directory. By adding TEMPLATE.CPP,
TEMPLATE.DEF and the ARX libraries, the minimum ADS files
have been included in your project.

Now the Compiler values need to be set:
6. In the "Build" pulldown, select "Settings" to bring up the "Project

Settings" dialog. Initially the "Settings for:" list box should have

both "Win32 Debug" and "Win32 Release" highlighted so all
setting changes will apply to both.

7. Select the "C/C++" tab to bring forward the compiler settings. Here
are the categories and appropriate settings. Settings not shown
should be left as the default values. Other settings may work, but
these are the recommended values:

Code Generation
Use run-time library-> Single-threaded (using other

settings will likely cause errors)
Preprocessor
Preprocessor Definitions-> Add "ACRXAPP, RADPACK" to the

list.
Additional Include Directories -> Add in the \com\ads and

\com\adsrx\inc directories and others
necessary to your project. Using the
ARX SDK, you can just add the
\arx\inc directory.

NOTE: You may also add the ADS/ARX directory paths to the
general MSVC++ IDE include search paths and leave it out of
"Additional Include Directories" edit box.

Finally the Linker values need to be set:
8. Select the "Link" tab to bring forward the linker settings. Settings

not listed should be left as the default values. Other settings may
work, but these have been tested:

General
Output File Name -> Enter the desired name. If you use an

extension other than .dll, MSVC++ 2.x
will use it. It is recommended that you
use the extension .ARX because this is
the default extension that AutoCAD will
use for ARX applications. For this
example use TEMPLATE.ARX.

NOTE: MSVC++ 4.x may not automatically place an extension on
the final DLL file. So, if you do not include an extension then there
will be no extension on the final DLL file.

Output

Base Address -> 0x1c000000
Entry-Point Symbol -> DllEntryPoint@12

9. Choose the OK button and the project is now complete and is
ready to be built into a Windows ARX program. This single
executable can be run in any Windows based Release 13 ARX
environment. Currently these are: Windows 3.1x (with AutoCAD
R13 properly installed including Win32s), Windows NT 3.5x, and
Windows 95.

NOTE: There is currently a problem where applications built using
MS Visual C++ 4.0 are NOT compatible with the DOS386 platform.
Using Visual C++ 2.1 or 2.2 an ARX application can be loaded in
the AutoCAD DOS386 version. This problem is currently being
evaluated and we will update this document in the future depending
on the out come.

Now all the settings have been made in order to build the application.

Debugging ARX with the MSVC++ 4.0 IDE
To debug an ARX session you need to start AutoCAD from the debug
environment. Here are the steps to set this up:

1. From the “Build” pulldown choose “Settings.”

2. Select the “Debug” tab and enter the full path of your AutoCAD
executable in the “Executable for debug session” edit box. This
would normally be \R13\WIN\ACAD.EXE.

3. In the “Working directory” edit box enter the directory you want
AutoCAD to start up in. This might be the AutoCAD directory
(\R13\WIN) or your project directory. This setting is not required.

4. In the “Program arguments” edit box enter any AutoCAD command
line arguments. This is might be important if you are running
AutoCAD with a working directory set to your project directory, but
you want AutoCAD to see a configuration file from somewhere
else. You might set this as: /c d:\cfg\r13nt.

The basic steps for a simple debug session follows. The source code
used as an example is the TEMPLATE.C file using the following adsfunc
function definition:

int adsfunc()
{

int i,j;

for (i = 0; i < 10; i++) {
j = i*100;
ads_printf ("\ni = %d, j= %d", i, j);

};

ads_printf("\nDone!");

ads_retvoid();

 return RSRSLT;
}

To debug this application:
1. Create a project according to the aforementioned steps using the

TEMPLATE.C application.

2. Add the adsfunc function mentioned above.

3. Build the project.

4. Set a break point. Open the TEMPLATE.C program by double
clicking on the file in the FileView Tab of the Workspace(Left hand
Window within the Developer Studio). Then place the cursor at the
line that contains:

 j = I*100;

Right click and choose “Insert/Remove Breakpoint.” This should
insert a new break point and you will see it with a red dot display in
the margin.

5. From the Build pulldown, choose Debug and then Go. AutoCAD
should start running now.

6. Switch back to the AutoCAD Window and load the ADS
application. Use APPLOAD or (XLOAD “<yourapp>”)

7. Execute the application (ADSFUNC). Control will switch back to the
Developer Studio and you can step through the contents for the
variable j.

