
Introduction to Design 

Optimization: 

Search Methods  



1-D Optimization 

•  The Search  
–  We don’t know the curve.  Given α, we can calculate f(α). 
–  By inspecting some points, we try to find the approximated 

shape of the curve, and to find the minimum, α* 
numerically, using as few function evaluation as possible. 

•   The procedure can be divided into two parts: 
a) Finding the “range” or region “ known ” to contain α* . 
b) Calculating the value of α* as accurately as designed or as 

possible within the range – narrowing down the range. 



N-Dimensional Search 

•  The Problem now has N Design Variables. 
•  Solving the Multiple Design Variable Optimization 

(Minimization) Problem Using the 1-D Search Methods 
•  This is carried out by: 

–  To choose a direction of search 
o To deal with one variable each time, in sequential order - 

easy, but take a long time (e.g. x1, x2, …, xN) 
o To introduce a new variable/direction that changes all 

variables simultaneously, more complex, but quicker (e.g. S) 
–  Then to decide how far to go in the search direction (small 

step ε = Δx, or large step determining α  by 1D search) 



Search Methods 
•  Typical approaches include: 

–  Quadratic Interpolation (Interpolation Based) 
–  Cubic Interpolation 
–  Newton-Raphson Scheme (Derivative Based) 
–  Fibonacei Search (Pattern Search Based) 
–  Guided Random 
–  Random 

•  Iterative Optimization Process: 
–  Start point αo → OPTIMIZATION → Estimated point αk   
→ New start point αk+1  

–  Repeat this process until the stopping rules are satisfied, 
then α* =αn . 



N-D Search Methods 
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N-D Search Methods 
•  Calculus Based 

–  Indirect method: knowing the objective function set the gradient 
to Zero. If we need to treat the function as a “black box” we 
cannot do this. We only know F(X) at the point we evaluate the 
function.  

–  Direct  Methods: 
•  Steepest Descent method 
•  Different flavors of Newton methods 

•  Guided random search-combinatory techniques 
–  Genetic method 
–  Simulated annealing 

•  Random: Monte Carlo 
•  Enumerative method: scan the whole domain. This is simple but 

time consuming 



Steepest Descent or Gradient Descent 
•  The gradient of a scalar field is a vector field which points in the direction of 

the greatest rate of increase of the scalar field, and whose magnitude is the 
greatest rate of change. This means that if we move in its negative direction 
we should go downhill and find a minimum. This is the same path a river 
would follow. Given a point in the domain the next point is chosen as it 
follows: 

X0 

X1 

X2 

X3 

isoline 

Gradient always normal to isoline 

isoline 

isoline isoline 



Steepest descent and ill-conditioned, badly 
scaled functions 

•  Gradient descent has problems with ill-conditioned functions such as the 
Rosenbrock function shown here. The function has a narrow curved valley 
which contains the minimum. The bottom of the valley is very flat. Because 
of the curved flat valley the optimization is zig-zagging slowly with small 
stepsizes towards the minimum. 



Newton-Raphson Method 
•  The Newton-Raphson method is defined by the recurring 

relation: 

An illustration of one iteration of Newton's method 
(the function ƒ is shown in blue and the tangent line 
is in red). We see that xn+1 is a better approximation 
than xn for the root x of the function f. 



Secant Method 
•  The Secant method is defined by the recurrence 

relation: 

The first two iterations of the secant method. The 
red curve shows the function f and the blue lines 
are the secants. 



Quadratic  Interpolation 
Method  

2(( )) H a b cf α αα α= + +⇐

•  Quadratic Interpolation uses a quadratic function, H(α), to 
approximate the “unknown” objective function, f(α). 

•  Parameters of the quadratic function are determined by several 
points of the objective function, f(α).  

•  The known optimum of the interpolation quadratic function is 
used to provide an estimated optimum of the objective function 
through an iterative process. 

•  The estimated optimum approaches the true optimum. 
•  The method requires proper range being found before started.  
•  It is relatively efficient, but sensitive to the shape of the objective  

H(α) 

f(α) 



Combinatory Search: Genetic Algorithm 

•  Valid for discrete variables 
•  One of the best “all purposes” search method. 
•  Emulates the genetic evolution due to the “survival of the fittest” 
•  Each variable value >a GENE, a binary string value  in the variable range 
•  Vector variables X> a CHROMOSOME, a concatenation of a random 

combinations of Genes (strings) one per type (one value per variable). A 
Chromosome (Xi) is a point in the X domain and is also defined as 
genotype. 

•  Objective Function F(X)>phenotype. F(Xi ) is a point in the Objective 
Function domain corresponding to Xi . 



Genetic Algorithm 

•  Construction of a chromosome Xi(xi,yi,zi) 

x1 y1 z1 

X1 



Genetic Algorithm 
1) Construct a population of genotypes (chromosomes) and evaluate the phenotypes 

(objective function). 
 

2) Associate a fitness value between 0 and 1 to each phenotype with a fitness function. 
This function normalizes the phenotype (objective function) and assigns to its 
genotype an estimate (between 0 and 1) of its ability to survive. 
 

3) Reproduction. The ability of a genotype to reproduce is a probabilistic law biased by 
the value given by the fitness function. Reproduction is done as it follows: 

     Given 2 candidate for reproduction, we have: 
  a) Cloning. The offspring is the same as the parents 
  b) Crossover. Chromosomes are split in two (head and tail) at a random point  

                 between genes and rejoined swapping the tails. When crossover is performed  
                 Mutation takes place. Each Gene is slightly changed to explore more possible  
                 outcomes. 

 
4) Convergence. The algorithm stops when all genes in all individuals are at 95% 

percentile 





Genetic Algorithm. Example 



Genetic Algorithm. Example 



Genetic Algorithm. Example Results 
Outcome: 



Simulated Annealing (wikipedia) 

•  The name and inspiration come from annealing in metallurgy, a 
technique involving heating and controlled cooling of a material to 
increase the size of its crystals and reduce their defects. The heat 
causes the atoms to become unstuck from their initial positions (a 
local minimum of the internal energy) and wander randomly through 
states of higher energy; the slow cooling gives them more chances 
of finding configurations with lower internal energy than the initial 
one. 

•  In the simulated annealing (SA) method, each point s of the search 
space is analogous to a state of some physical system, and the 
function E(s) to be minimized is analogous to the internal energy of 
the system in that state. The goal is to bring the system, from an 
arbitrary initial state, to a state with the minimum possible energy. 



•  By analogy with this physical process, each step of the SA algorithm 
attempts to replace the current solution by a random solution 
(chosen according to a candidate distribution, often constructed to 
sample from solutions near the current solution). The new solution 
may then be accepted with a probability that depends both on the 
difference between the corresponding function values and also on a 
global parameter T (called the temperature), that is gradually 
decreased during the process. The dependency is such that the 
choice between the previous and current solution is almost random 
when T is large, but increasingly selects the better or "downhill" 
solution (for a minimization problem) as T goes to zero. The 
allowance for "uphill" moves potentially saves the method from 
becoming stuck at local optima. 



Monte Carlo Method 
•  Monte Carlo methods vary, but tend to follow a particular pattern: 

•  Define a domain of possible inputs. 
•  Generate inputs randomly from a probability distribution over the 

domain. 
•  Perform a deterministic computation on the inputs. 
•  Aggregate the results. 



•  Draw a square on the ground, then inscribe a circle within it. 
•  Uniformly scatter some objects of uniform size (grains of rice or 

sand) over the square. 
•  Count the number of objects inside the circle and the total number of 

objects. 
•  The ratio of the two counts is an estimate of the ratio of the two 

areas, which is π/4. Multiply the result by 4 to estimate π. 
•  In this procedure the domain of inputs is the square that 

circumscribes our circle. We generate random inputs by scattering 
grains over the square then perform a computation on each input 
(test whether it falls within the circle). Finally, we aggregate the 
results to obtain our final result, the approximation of π. 

For example, consider a circle inscribed in a unit square. Given 
that the circle and the square have a ratio of areas that is π/4, the 
value of π can be approximated using a Monte Carlo method: 



•  To get an accurate approximation for π this procedure 
should have two other common properties of Monte 
Carlo methods. First, the inputs should truly be random. 
If grains are purposefully dropped into only the center of 
the circle, they will not be uniformly distributed, and so 
our approximation will be poor. Second, there should be 
a large number of inputs. The approximation will 
generally be poor if only a few grains are randomly 
dropped into the whole square. On average, the 
approximation improves as more grains are dropped. 


