
Curves  
- Foundation of Free-form Surfaces 



Why Not Simply Use a Point Matrix to 
Represent a Curve? 

•  Storage issue and limited resolution 
•  Computation and transformation 
•  Difficulties in calculating the intersections or curves 

and physical properties of objects 
•  Difficulties in design (e.g. control shapes of an 

existing object) 
•  Poor surface finish of manufactured parts 



Advantages of Analytical 
Representation for Geometric Entities 

•  A few parameters to store 
•  Designers know the effect of data points on curve 

behavior, control, continuity, and curvature 
•  Facilitate calculations of intersections, object 

properties, etc. 



Analytic Curves vs. Synthetic Curves 

•  Analytic Curves are points, lines, arcs and circles, 
fillets and chamfers, and conics (ellipses, parabolas, 
and hyperbolas) 

•  Synthetic curves include various types of splines 
(cubic spline, B-spline, Beta-spline) and Bezier 
curves. 



Curved Surfaces 

•  In CAD, We want to find a math form for representing curved 
surfaces, that : 
 (a) look nice (smooth contours) 
 (b) is easy to manipulate and manufacture 
 (c) follows prescribed shape (airfoil design) 

To study the curved surface, we need to start from curves. 



Parametric Representation 
 

 
* a curve            * a surface 
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We can represent any functions of curve (curved surface) using parametric equation. 



Parametric Representation of Lines 
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•  How is a line equation converted by the CAD/
CAM software into the line database? 

•  How are the mathematical equation correlated 
to user commands to generate a line? 
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• poor and non-uniform definition 

• square root complicated to compute 

Circle 
Representation 1 (Non-parametric) 
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Circle 

Representation 2 (parametric) 

 

(b)       cosx u=  

siny u=  

• better definition than (a) 

• but still slow 
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Circle 

Representation 3 (parametric) 

(c)        Recursive approach
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Observation: curves are represented by a series of line-segments 

Similarly all conic sections can be represented. 
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Ellipse 
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The computer uses the same method as in the Representation 
3 of circle to reduce the amount of calculation. 

 



Example 





Parabola 
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Hyperbola 
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Parametric Representation of 
Synthetic Curves 

 
•  Analytic curves are usually not sufficient to meet geometric 

design requirements of mechanical parts. 
•  Many products need free-form, or synthetic curved 

surfaces. 
•  Examples: car bodies, ship hulls, airplane fuselage and 

wings, propeller blades, shoe insoles, and bottles  
•  The need for synthetic curves in design arises on 

occasions: 
§ when a curve is represented by a collection of measured 

data points and (generation) 
§ when a curve must change to meet new design 

requirements. (modification) 



The Order of Continuity 
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Simplest Case Linear Segment High order polynomial may lead to “ripples”
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The order of continuity is a term usually used to measure 
the degree of continuous derivatives (C0 , C1 , C2).  



Splines – Ideal Order 
Splines ⎯ a mechanical beam with bending deflections, or a 
smooth curve under multiple constraints. 
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Drafting Spline 



Hermite Cubic Splines 
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3×4 = 12 
coefficients to 
be determined 

Cubic Spline 
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Hermite Cubic Splines 
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Hermite Cubic Splines Equation: 
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In matrix form: 

Hermite Cubic curve in 
vector form 



Limitations with Hermite Curves 

•   Hard to guess behavior between 2 defined points for 
arbitrary end point slopes 
 
•  Limited to 3rd degree polynomial  therefore the curve is 
quite stiff 
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Bezier Curve 



- passes 0p  and np , the two end points. 

- has end point derivatives: 
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- uses a vector of control points, representing the n+1 vertices of a 

     “characteristic polygon”. 

Bezier Curve 
•  P. Bezier of the French automobile company of 

Renault first introduced the Bezier curve.  

•  A system for designing sculptured surfaces of 
automobile bodies (based on the Bezier curve) 
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Bernstein Polynomial 
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Bernstein Polynomial 

In the mathematical field of numerical analysis, a Bernstein polynomial, 
named after Sergei Natanovich Bernstein, is a polynomial in the 
Bernstein form, that is a linear combination of Bernstein basis 
polynomials. 

A numerically stable way to evaluate polynomials in Bernstein form is 
de Casteljau's algorithm which reduces the computational demand 
caused by the factorials. 
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The order of Bezier curve is a function of the number of control points. Four

control points (n=3) always produce a cubic Bezier curve.
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Convex Hull Property 



An Example   
The coordinates of four control points relative to a current WCS are given by 

 

P0 = 2 2 0!
"

#
$
T
,P1 = 2 3 0!

"
#
$
T
,P2 = 3 3 0!

"
#
$
T
,P3 = 3 2 0!

"
#
$
T

 

Find the equation of the resulting Bezier curve. Also find points on curve for 

u = 0, 14,
1
2,
3
4,1  
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Solution 
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Substituting the u values into his equation gives 
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Figure 5_49 Bezier curve and generated points 

- control points, P1, P2, P3, & P4, 

- points on curve, P(u) 

u = 0, ¼, ½, ¾, 1 



Improvements of Bezier Curve Over 
the Cubic Spline 

•  The shape of Bezier curve is controlled only by its defining 
points (control points).  First derivatives are not used in 
the curve development as in the cubic spline. 

•  The order or the degree of the Bezier curve is variable 
and is related to the number of points defining it; n+1 
points define a nth degree curve. 
 This is not the case for cubic splines where the degree is 
always cubic for a spline segment. 

•  The Bezier curve is smoother than the cubic splines 
because it has higher-order derivatives. 
 



B-Spline 

• A Generalization from Bezier Curve 

• Better local control 

• Degree of resulting curve is independent 
to the number of control points. 

 



Math Representation 
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Parametric Knots 

:ju  parametric knots (or knot values), for an open curve B-spline: 
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Knot Value Calculation 
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n = 3;   4 control points 
k = 4;    4-1=3 cubic polynomial 

0 ≤ j ≤ n+k= 7  

n increases – wider base 
k increases – wider & taller 



Properties of B-Spline 
•  Number of control points independent of degree of 

polynomial 

  

vertex   

Quadratic B - Spline   
Cubic B - Spline   
Fourth Order    B - Spline 

  

The higher the order of 
the B-Spline, the less the 

influence the close 
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Properties of B-Spline 

• B-spline allows better local control. Shape of the curve 
can be adjusted by moving the control points.  

• Local control: a control point only influences k segments. 
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Properties of B-Spline 

Repeated values of a control point can pull a B-spline 
curve forward to vertex. (“Interactive curve control”) 

Add more 
repeated 

control points 
to pull the 

curve 

Same order 
polynomial 



An Example 

Find the equation of a cubic B-spline curve defined 
by the same control points as in the last example.  
 
How does the curve compare with the Bezier curve? 

 



Example Problem for 
Finding the Bezier Curve 



Example Problem for Finding the Bezier Curve 



Finding the B-Spline Curve for the Same Example Problem  



Values to be Calculated 

n = 3;   4 control points 
k = 4;    4-1=3 cubic polynomial 

uj: 0 ≤ j ≤ n+k= 7  

n increases – wider base 
k increases – wider & taller 



Calculating the Knots, uj  



Calculating Ni,1 
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Calculating Ni,k 



Calculating Ni,k 



Result 

n + 1 control points: 3+1=4 
k – 1 degree curve:   4-1=3 

 
4 control points – cubic polynomial 



Non-Uniform Rational     
B-Spline Curve (NURBS) 
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Rational B-Spline 



h adds a degree of freedom to the curve, allowing to give more or less 
weight to each control point 

then 





Development of NURBS 

• Boeing: Tiger System in 1979 

• SDRC: Geomod in 1993 

• University of Utah: Alpha-1 in 1981 

•  Industry Standard: IGES, PHIGS, PDES, 
Pro/E, etc. 



Advantages of NURBS 
•  Serve as a genuine generalizations of non-rational B-spline forms 

as well as rational and non-rational Bezier curves and surfaces 
•  Offer a common mathematical form for representing both standard 

analytic shapes (conics, quadratics, surface of revolution, etc) and 
free-from curves and surfaces precisely.  B-splines can only 
approximate conic curves. 

•  Provide the flexibility to design a large variety of shapes by using 
control points and weights. increasing the weights has the effect of 
drawing a curve toward the control point. 

•  Have a powerful tool kit (knot insertion/refinement/removal, degree 
elevation, splitting, etc. 

•  Invariant under scaling, rotation, translation, and projections. 
•  Reasonably fast and computationally stable. 
•  Clear geometric interpretations 



Interpolation Using Hermite Curves 









Clamped or Free Ends 



Disadvantages of Cubic Splines 

•  The order of the curve is always constant regardless 
of the number of data points.  In order to increase 
the flexibility of the curve, more points must be 
provided, thus creating more spline segments which 
are still of cubic order.  

•  The control of the curve is through the change of the 
positions of data points or the end slope change.  
The global control characteristics is not intuitive. 

 




