Curves

- Foundation of Free-form Surfaces




Why Not Simply Use a Point Matrix to
Represent a Curve?

« Storage issue and limited resolution
« Computation and transformation

 Difficulties in calculating the intersections or curves
and physical properties of objects

 Difficulties in design (e.g. control shapes of an
existing object)

« Poor surface finish of manufactured parts



Advantages of Analytical
Representation for Geometric Entities

A few parameters to store

Designers know the effect of data points on curve
behavior, control, continuity, and curvature

Facilitate calculations of intersections, object
properties, eftc.




Analytic Curves vs. Synthetic Curves

« Analytic Curves are points, lines, arcs and circles,
fillets and chamfers, and conics (ellipses, parabolas,
and hyperbolas)

» Synthetic curves include various types of splines
(cubic spline, B-spline, Beta-spline) and Bezier
curves.



Curved Surfaces

« In CAD, We want to find a math form for representing curved
surfaces, that :

(a) look nice (smooth contours)
(b) is easy to manipulate and manufacture
(c) follows prescribed shape (airfoil design)

To study the curved surface, we need to start from curves.



Parametric Representation

* a curve * a surface

P(u) = [x(u),y(u),z(u)]T P(u,v)= [x(u,v),y(u,v),z(u,v)]T

u=const

Umax
pxy.2) v=const

p(u) y

3 >

We can represent any functions of curve (curved surface) using parametric equation.




Parametric Representation of Lines

 How is a line equation converted by the CAD/
CAM software into the line database?

 How are the mathematical equation correlated
to user commands to generate a line?

P =P +(P-PB)
P-F=u(P-F)

/ v P=P +ulP,-P), Osu=l



/ g P=P +ulP,-P), O<su=xl

(x =X, +u(x, —x,)

y=y+u(y,-y) O=su=l

z=2z +u(z,-z)

S\




Circle

Representation 1 (Non-parametric)

® poor and non-uniform definition

* square root complicated to compute

A

0

0.25 0.5



Circle
A

Representation 2 (parametric) /2 |

(b) X = COS Uu

Yy =sinu

® better definition than (a)

e but still slow



. Ay P
Circle N LA .
1 A\
| R —4 LY P,
Representation 3 (parametric) Yn T
d57
Recursive approach | '
PP dil dv IR I ¥
x, = rcosf p
v = rsing n Xn+1 Xn
x,,., =rcos(f +dfO) =rcosfcosdfd —rsmbsmdol

x, ., =x,cosdfO — y, sindl
- Pn+1

Y, =V, cosdO + x, sind@

Observation: curves are represented by a series of line-segments

Similarly all conic sections can be represented.



Ellipse

x=x_+ Acosl

y=y +Bsmf O0=0=<2x

J\\

Z=7z,

"

The computer uses the same method as in the Representation
3 of circle to reduce the amount of calculation.



Example

Derive the parametric equation of an ellipse in the xy plane, which has a center at
(X, Y ) and the major and the minor axes as illustrated in the accompanying figure.

ANSWER

The ellipse of interest can be obtained by rotating the reference ellipse at the origin
by ¢ about the z axis and translating it by X_in the x direction and by Y _ in the y di-
rection. If the x, y, and z coordinates of the points on the ellipse of interest are de-
noted x", y*, and z* and those of the reference ellipse are denoted x, y, and z, the
following equation will hold:

c7c?

[x‘ y 0 I]T = Trans(X,,Y.,0)Rot(z,¢)(x y 01)"



b
[x* 3 0 l]T =Trans(X_,Y.,0)Rot(z,¢)(x y 0 l)T <\\~//‘}a .
1 0 0 X.[cos¢ —sing 0 O[x]
101 0 Y. |/sing cos¢ O Ofy
joo1 0| 0 0o 10/0
000 1JJ0 0 0 11

=(xcos@—ysing+ X, xsingp+ycos¢+Y. 01)

=xcos ¢—ysin¢+X_=acos fcos¢—bsinOsing + X,
=xsin¢+ycos@+ Y =acosOsing+ bsinBcosp+7Y,
=0 (0=<£6<2n)



explicit

parametric

Zz =2

Parabola

2
X=cy

2
x=x,+ Au

<y=y0+2AM



implicit

parametric

J\L

Hyperbola

2 2
X YV
—~ =1
a b
‘x =acoshu

y =bsmhu




Parametric Representation of
Synthetic Curves

» Analytic curves are usually not sufficient to meet geometric
design requirements of mechanical parts.

« Many products need free-form, or synthetic curved
surfaces.

- Examples: car bodies, ship hulls, airplane fuselage and
wings, propeller blades, shoe insoles, and bottles
« The need for synthetic curves in design arises on
occasions:
= when a curve is represented by a collection of measured
data points and (generation)
= when a curve must change to meet new design
requirements. (modification)




The Order of Continuity

The order of continuity is a term usually used to measure
the degree of continuous derivatives (C”, C!, C?).

4 y 4 y
ni=2 g i=2
i:/ \izj?, =1 =3
% ¥
Simplest Case Linear Segment High order polynomial may lead to “ripples”

n
YV, =a,+a,x y,=a,+a,x+..+a,x



Splines — Ideal Order

Splines — a mechanical beam with bending deflections, or a
smooth curve under multiple constraints.

y"(x)= R(x): M(X) _ al.);; b,

EI
(x) _ L &@+ b x*+cx+d Cubic Spline
PR 6 2 oo




Drafting Spline




Hermite Cubic Splines

Plu) = [x(ue), y(u). 2(u)f

[ 3 2
x(u)=c3xu +C, U +C U+C,,

3 2

3 2
z(u) =C, U +C, U +C U+cC,,

pla)=[s(u) 5(0) ()] -3

3

|

|

=Pfu2uq > | =[UT[C]

1

|

|

0

Cubic Spline

3x4 =12
coefficients to
be determined

(0susl]



Hermite Cubic Splines
3
S+ C U+ C u' + C

OM

—3Cu +2Cu +C

Two =C, 4x3 equations
End _ _ _ _ f]
rom two
u=1 T _ L control points
C,+2C,+C,

Boundary Conditions:
Location of the two
end points and their
slopes




Hermite Cubic Splines

|

0 Ao

A1=Po'

- B)-2R -
=2(Ao_]31)+ Ao'+ A1

 —

P —_—

—_— . —_—

i ~ 3 2 ~_ 1 -~
u=Cu+Cu +Cu +C,

l

DA O

i=0

P(u) =2’ -3u” + )P, +(-2u’ +3u’)P

+(u’ -2u’ +u)]30' +(u’ —uz)Pl'

12 unknowns
and
12 equations

All
parameters
can be
determined

Hermite
Cubic curve
in vector
form



Hermite Cubic Splines Equation:

O p(u) = (2u3 -3u’ + I)PO + (-2143 + 3U2)f)1 Hermite Cubic curve in

; 5 -, 3 5 vector form
+Ww -2u” +u)Py+ (W -u’ )P

In matrix form: I P Based on:
> Location of
[,f W u 1] =33 -2 -l ! the two end
O 0 1 O ) points and
1 0 0 0 _, their slopes
B 1
=U’ [MH]V O<su=<l

I P(u) = (6u” = 6u)Ry +(=6u’ + 6u) Ry + (3u’ —du+ DE,
+(Bu*-2u)P Osu=<l



Limitations with Hermite Curves

* Hard to guess behavior between 2 defined points for
arbitrary end point slopes

* Limited to 3™ degree polynomial therefore the curve is
quite stiff



Bezier Curve

pw)= p,B,,)

=0

n — segment(each polygon)
n+1 — vertices (each polygon) and number of control points

ues|o, 1]



Bezier Curve

« P. Bezier of the French automobile company of
Renault first introduced the Bezier curve.

A system for designing sculptured surfaces of
automobile bodies (based on the Bezier curve)

- passes p_(; and 17,,: , the two end points.

- has end point derivatives:

- uses a vector of control points, representing the n+1 vertices of a

“characteristic polygon™.



Bernstein Polynomial

B, ()= (1-u)”

Ciln-i) !

B, ,(u)1s a function of the number of curve segments, n.

| | | |
n! 2! 1 2! _5 2! _1
it(n—i) 0 2! 11 21 0!




Bernstein Polynomial

In the mathematical field of numerical analysis, a Bernstein polynomial,
named after Serge1 Natanovich Bernstein, is a polynomial in the
Bernstein form, that is a linear combination of Bernstein basis
polynomials.

A numerically stable way to evaluate polynomials in Bernstein form i1s
de Casteljau’s algorithm which reduces the computational demand
caused by the factorials.




An Example: If n = 2,

_pl
. I A I
then n+1 = 3 vertices Py )22

| | | |
n! 2! _q 2! _» 2! _q
i'(n—1i) o 2! I 21 0l

f?(u)=1><(1—u)2]30+2><u(1—u)131+1><uzf92
p'(u)=-2(1- u)ﬁo +2(1- 214)]31 + 2uf92

. . L -
p(0)=p, p'(0)=2(p, - p,)

B(1) = p, ') =2(p, - p)




The order of Bezier curve is a function of the number of control points. Four

control points (n=3) always produce a cubic Bezier curve.
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Convex Hull Property

In addition to the properties of a Bezier curve described previously, another
important property of a Bezier curve is the convex hull property. A convex hull of a
Bezier curve is a convex polygon formed by connecting the control points of the
curve, as illustrated by the hatched areas in Figure Note that each of these
Bezier curves resides completely inside its convex hull.

(b)




An Example

The coordinates of four control points relative to a current WCS are given by

T T T
9 ’ ’

PO=[2 2 O]Pl=[2 30]P2=[3 30]@:[3 2 O]T

Find the equation of the resulting Bezier curve. Also find points on curve for




Solution

Plu)= BB,y + PB,+ P,B,; + PB,;  0sus]

B ()=~ (1)

Ciln-i) !

P(u)=1%(1—u)3+3Ru(1—u)2+3qu2(1—u)+P3u3 O<su=<l




Substituting the u values into his equation gives

P0)=P,=[2 2 of

u=_0, %, 2, 7, 1

P2 p 2 p2p e lp 2156 2563 of
4] 64 " 64 ' 64 64
PAV-Lp2pi2pilp o5 275 of
2] 8° '8 "' 8 ° 8
P2\ Llps2piZp 2 p _[2844 2563 o]
4] 64" 64" 64 7 64
Pil)=pP,=[3 2 of F’1(2,§ e )P2B3)

O - control points, P, P,, P, & P,

@ - points on curve, P(u)

PO(2.2) P3(3,2)



Improvements of Bezier Curve Over
the Cubic Spline

* The shape of Bezier curve is controlled only by its defining
points (control points). First derivatives are not used in
the curve development as in the cubic spline.

« The order or the degree of the Bezier curve is variable
and is related to the number of points defining it; n+17
points define a nth degree curve.

This is not the case for cubic splines where the degree is
always cubic for a spline segment.

 The Bezier curve is smoother than the cubic splines
because it has higher-order derivatives.



B-Spline

A Generalization from Bezier Curve
» Better local control

» Degree of resulting curve is independent
to the number of control points.




Math Representation

F(u)=2}_3xNi’k(u) O<su=<u

(k-1) degree of polynomial with (z+1) control points

— 1_30, }_)1, ,}_)n n+1 control points.
— N, (u) B-spline function (to be calculated in a recursive
form)
N . ]Vi,k—l (u) ]Vi+1,k—1 (u)
ik (u) = (u - ui) + (ui+k o u)

z/li+k—1 —U, U, k _ui+1

l 1+




Parametric Knots

]vi,k—l (u) N (ui+k 1) ]vi+1,k—1 (u)

U v — U, U — Uiy

l 1+

]Vi,k (u) = (u _ui)

u; : parametric knots (or knot values), for an open curve B-spline:

(0 j<k
Mj=<j—k+1 ijSI’l
n—k+2 j>n

where, 0 < j < n+k, thus if a curve with (k-7) degree and
(n+1) control points 1s to be developed, (n+k+1) knots
then are required with0 < u<wu, =n—k +2



B-Spline (non-periodic, uniform)

The curve is expressed by:

Where
Nix = (I:qui)Nik-.l + (1‘i+k"1¢1Ni.+1.k—1 2)
i+k-1"Uj Uit~ Ui+

Is the recursive expression (N; ydepends on N; ;_, where j is a generic i) and the base case N; ; is

defined as:
(I forw; S upyy
Nix = {0 otherwise (3)

And the knots u; are found based on the following:

0 for 0<i<k
u;=1i—k+1 fork<i<n (4)
n—k+2 forn<i<n+k



B-Spline curve evaluation method:

1. Define k and n, wherek1is the polynomial order and n+ / are the number of control points
Py...P,

2. Find the knots u;/=uy...u,.,. This is done by applying rule (4) for each of the u;
3. Find N;; = Ng1Np 1....N_1 1 using the base case rule (3)

4. Find (note that you have to apply the rule that 0/0=0):
a. Nj;=Ny,N;,...N,,_;, using the base case rule (2) if you have k=2 stop here otherwise
b. Nj3=Ng3N;3...Ny_33 if you have k=3 stop here otherwise
keep repeating until you reach the defined order &

5. With the last step in 4. The N; , = Ny Ny 5....Ny,_ x have been obtained and the summation in
(1) can be performed. Obviously in order to complete the curve expression the coordinates of
the points P; need to be known too.



Knot Value Calculation

N, N.
i k-1 (u) (. —u) P41, k—1 (u)
Uu.

z/li+k—1 - ui itk z/tz'+1

]vi,k (u) = (u _ui)

N:,p: = F C Ni;k-‘) ’\];u,k-v )
- ,1_\

=t Noa| Niu | Ni Nuq {3
k=3 Nos § Nis| Nas an Neg isa T
0| Mo | Ny | oa | Noa| Moy | M| 408
kot | Ne | N | Noo| My | Moo | No| W | 4

n =3, 4 control points
k=4; 4-1=3 cubic polynomial
0<j<ntk=7

n increases — wider base
k increases — wider & taller



Properties of B-Spline

* Number of control points independent of degree of
polynomial

verteX  quadratic BSpline k=3
Cubic B-Spline k=4
Fourth Order B-Spline k=5

Linear k=2

vertex

The higher the order of
the B-Spline, the less the
influence the close
control point

vertex

n=3, 4 control points

@
vertex



Properties of B-Spline

* B-spline allows better local control. Shape of the curve
can be adjusted by moving the control points.
* Local control: a control point only influences k segments.




Properties of B-Spline

Repeated values of a control point can pull a B-spline
curve forward to vertex. (“Interactive curve control™)

\ ’ ! A = 3 for all curves
i \ ]
¥ \ !
P| \5— ————————— ——f
P, P
— One point at P, Add more
- Two points at P;
Same orQer — Three points at Ps repeated
polynomial control points

to pull the
curve



An Example

Find the equation of a cubic B-spline curve defined
by the same control points as in the last example.

How does the curve compare with the Bezier curve?



Example 5.19. The coordinates of four control points relative to a current WCS are
given by

Fo=(2 2 0), P,=[2 3 0), P,=(3 3 0)", and P,=[3 2 0]
Find the equation of the resulting Bezier curve. Also find points on the curve for

u=044 2. and I

Sviution. Equation (5.91) gives

P(U)=P080'3+P|B'.3+P)B)_J"‘P’B"J, OSNSI

Using Eqgs. (5.92) and (5.93), the above equation becomes
P(u) = Po(1 — u)® + 3Pl — w)* + 3P, u?(l — u) + P, u?, O<u<l

Example Problem for
Finding the Bezier Curve

T ———— - — —— ———

FIGURE 549
Pol(2.2) P1(3.2) Bezier curve and generated points,



Example Problem for Finding the Bezier Curve

P(u) = Pyo(1 — u)* + 3Pl — w)® + 3P, u*(l — u) + P, u?, O<u<l

Fo=[2 2 0), P,=[2 3 0), P,=(3 3 0)", and P,=[3 2 0]

Substituting the u values into this equation gives

PO)=Py,—-[2 2 0]7

Pl —271’ +27P+9P +lP [2.156 2563 0]
4 —64 0 641 64 2 64 3 > . ]

| 1 3 3 1

2 8 8 8

3 ] 9 27 27

o — — . — P, =[2844 2.563 T
P(d) MP0+64P,+64P,+64 y = [2.8 2.563 0]

P(l)=P,=[3 2 0]r

3

Observe that ) B, ; is always equal to unity for any u value. Figure 5-49 shows the
=0

curve and the points.




Finding the B-Spline Curve for the Same Example Problem

Example 5.21. Find- the equation of a cubic B-spline curve defined by the same
control points as in Example 5.19. How does the curve compare with the Bezier

curve?
@ cubic curve . k=4, fomrpoinds. N=3 (o, 1, 2, 3)
) 0 J<k=4
S - Umax = n-k+2 =
uJ—{J-KH ={"-3 Toed osu:| |
n-k+l | 1>3
0 e) <= n+k =7
@ [pw) = B - Ni(W)
. l u;<u<u3§l
Ny = {o sthaiwrasn e w
N. u . TR
ik = (U- Uc) =3 ) + (Uiee - Uise ~Uis

Solution. This cubic sphnc has k = 4 and n = 3. Eight knots are needed to calculate
the B-spline functions. Equation (5.106) gives the knot vector




Values to be Calculated

® (g uy w3y wy wy us wg uy]
The range of u [Eq. (5.108)] 1s 0 < u < 1. Equation (5.103) gives
o) Pu) =PoNo .+ PN, . + PN, (+P;N, ., 0O<usl

N:,K — 'P ( Ni)ﬁ—" A’;4| , k=1 )

K=4 <3
k=3 AS4 T
ge2 N, 158

K={ NQ.' Nu Na‘g N"' Uﬁ' N’. N{' AL

n =3, 4 control points : :
n increases — wider base

k=4; 4-1 23. cubic polynomial k increases — wider & taller A
w: 0<j <ntk=7



Calculating the Knots, u;

cubic curve . K=4, fowrpoinds. N=3 (o, 1, 2, 3)

o 0 J<k=4
- . Umax = n-k+2 =
n-k+2 l i>3 - '

0 ) < ntk =7

[UO iy ty Us My g g u-,] A5 [O 0 0 0O | | | l]

menhe— . ]




(1 u, <su<u,,
N, ,={1 u=u,, and usu,,and u—u, =1
Calculating MZ 0 otherwise
0
Y0
0
KnoTs [ Uo U U Uy Ue Us M «, ]
O Nix. Ck=#) 00 00 1 1 t
s 4=0.1, 2 Ui=0 < U = Uer = O

(v ©wu=0)
No.: = Nw, = Ns., "—{ :) Al

elsewhere
a4d=3 U;i=0 = U = Uy =]
(er osU =1 )
Nz, 1 = {l'o——‘q"
0, otherwise
adl= 4. %, 6 u;leu € Uieyr = |

Cev U={)

] U=/
N"' = Ns" = N"' = { (o] e(n u‘elc




Calculating N, ,

To calculate the above B-spline functions, use Eqs. (5.104) and (5.105) together with

the knot vector as follows: B¢ 2,3) P, (3,3)
No =N, =N, =4 "=0 - T"-—"_-—'
o.r "t %P0, elsewhere | |
|
K=\ N. = I, O=<u<l | :
. e 0, elsewhere | |
VK37 '
L‘) . - . l. u=l |
Ne1=Ns  =Ng,= {0' T Po C2, 2) chg‘z)
= No., Ny uNg ,  (—uN, , _
.rNo‘z—(u uO)u,-—-uo+(u2 u)“z_“‘ 0 i 0 =0
Ny Nz uN, , (—u)N, ,
~|.2—(“—“|)L;_“I4(“J .u)"s—“z i | 0 w 0
. N N —
Ni2=(u—u,) 2.1 + (ug — u) —== =- 1'l+(l ')N3'1=(1—“)N3.1
u,—u, Uy — Uy 0 l
k=2 N N (1 — N
- 3.1 . 4.1 _ 4.1 _
it €7 Ny =(u u’)u.—-u,-'-(“s u)u,—u‘ uN"’+A 0 uNs.1
e N N N (1 — u)N
& — s 1
Ny oy =(u—ug) == 4 (U — ) =A==y~ 1) =L 4 ——= =0
' ug — u, Ug — Uy 0 0
N N — )N - (1 = u)N
Ny p=(u—ug) —— + (u; — u) —= DN, (=il



Calculating N, ,

N N 0
fN°"=(“_"°)u,j;o+("’-")u,:::,="6H_")6=0
N N N | — u)N
Moy = (0 ) 22 (g ) 2wy 2 U2 D02
’ Uy — U, Uy — U, 0 1
N N
Kcs 1) Nz.az(""“z)“‘_z_.:’+(“s_“)usj:3=“Nz,z+“—“)N).z:‘2““_“)Ns.l
: N N N
it Ny ai=u—u) 22 4 (ug — u) —=— = u’N; , + (1 — u) =2 = ulN, ,

) \ ug — uy Ug — U, 0
Ny 2 Ns. 2 Nia Ns.2

-NA,J:"(U—“‘)“ e *(“1'"“)“ == =(u—1) 0 + (1 — u)
6 s ? 5

=0

N N
o Nooa=(u—ug) =22 4 (ug —u) == = (1 —u’N,,

Uy = Uy Uy — U,
N,

+ (15 — u) Nas _ 3u(l — uN, ,

=4 { ™ e ey

N N "
itgey | Npa=(u—up) —2 + (ug — u) —>>~ = Ju’(l —u)N, ,

NJ.J

N,

L3

+(u7"'U) =“JN}.|
Wy = Uy Uy — U,

3,4 = (U —uy)



Result

Substituting N; , into Eq. (5.115) gives
P(u) = [Po(l — u)* + 3P,u(l — u)® 4+ 3P, u’(1 —u) + P,u’]IN, |, O<u<l

Substituting N, , into this equation gives the curve equation as

P(u) = Po(l — u)® + 3P,u(l — u)? + 3P,u*(l — u) + Py u’, D<u<l

This equation is the same as the one for the Bezier curve in Example 5.19. Thus the
cubic B-spline curve defined by four control points is identical to the cubic Bezier
curve defined by the same points. This fact can be generalized for a (k — 1)-degree
curve as mentioned earlier.

n + 1 control points: 3+1=4
k — 1 degree curve: 4-1=3

4 control points — cubic polynomial



Non-Uniform Rational
B-Spline Curve (NURBS)

Rational B-Spline

max

F(u)= \ ExRi,k(u) O<su=u

l=

nV, (u)

Y
Eél./\/f’/f(u)
7=0

R

7,

(/2, — scalar)

If i, =1,then R, (u) = N, (u) ,it is the representation of a B-Spline curve.

Industry Standard Today!




h adds a degree of freedom to the curve, allowing to give more or less
weight to each control point

i=0

yeh= i(h,- ')’i)Ni,k(u)

i=0
zeh= Y (h-z;)N; ()
i=0
n
h= 2 IN; (1) then
i=0

2 hiPI'N!.,k (u)
P(u) = =2

) hN; (1)
i=0



What o MNURBS ?
rdf'fmd-»@ an ol 8—-57‘4’” .

N

Py = = P R wCth) o€ U € Uman
BM 1401 ' A
i Miec)
R:)k Cu) = (ﬁ -sc‘/ar'

She hi Nt
A homsgeneons coordinste vector H =Lhohu,~had’

& hfroductol amel .a{,c baers 140»10/:”: Lo Jeﬂ'ned’
bj 1’{4 a/jebmc‘c mffo 670 fwe Ipo{ynom.‘ds.

2l ki =(, Rietw) = Mecw)



Development of NURBS

* Boeing: Tiger System in 1979
« SDRC: Geomod in 1993
 University of Utah: Alpha-1in 1981

* Industry Standard: IGES, PHIGS, PDES,
Pro/E, etc.



Advantages of NURBS

Serve as a genuine generalizations of non-rational B-spline forms
as well as rational and non-rational Bezier curves and surfaces
Offer a common mathematical form for representing both standard

analytic shapes (conics, quadratics, surface of revolution, etc) and
free-from curves and surfaces precisely. B-splines can only
approximate conic curves.

Provide the flexibility to design a large variety of shapes by using
control points and weights. increasing the weights has the effect of
drawing a curve toward the control point.

Have a powerful tool kit (knot insertion/refinement/removal, degree
elevation, splitting, etc.

Invariant under scaling, rotation, translation, and projections.
Reasonably fast and computationally stable.
Clear geometric interpretations



Interpolation Using Hermite Curves

The ith Hermite curve, P(u), can be expressed by using Equations (6.10) and
(6.12) as follows:

P(w) =Py +P_u+[3(B ~P,_) 2P _ P}

l (6.55)




where P, and P, are the tangent vectors at data points P, , and P,, respectively. We
can obtain the same form of the Hermite curve equation for all P,(«) by substituting
specific values of i in the equation. The parameter value for every segment ranges
from O to 1.

There is one problem with the form of Equation (6.55)—the coefficients P},
and P are not usually provided. Thus we must modify Equation (6.55) somehow so
that P’ | and P/ do not appear. To be able to evaluate the values of P, and P'from
the given data points, we have to impose the following constraint equation to guar-
antee second-order continuity across the curve segments:

d’Pw) | _dP,®
du* - du*

:| (i=12,...,n-1) (6.56)
u=0

Substituting Equation (6.55) in Equation (6.56) gives

2-3P_ +3P,— 2P, —P)+6(2P,, ~2P,+ P +P. )=
2(-3P, + 3P, - 2F'-F.))

Note that the first line in Equation (6.57) is obtained by differentiating Equation
(6.55) twice and substituting u# = 1 in the resulting equation. The second line is ob-
tained by a similar procedure after we derive P, ,(u) by substituting i + 1 for i in
Equation (6.55). Rearranging Equation (6.57) gives

(6.57)

-3P_, (=12,..,n-1) (6.58)



Then we can derive the following matrix equation by substituting the values of i
from 1 to (n — 1) in Equation (6.58):

410 - .. 00])p | [3p,-3p-P,
1 4 1 0 ' . 0 O P2 3P3 - 3P1
01410 . . <l 3P, - 3P, (6.59)
0 0 1 4 1} . .

-O o . - 0 1 4-| _P;z—lj _3Pn - 3Pn-2 - PI'I_

assuming that Pj; and P’ are zeros at the ends because the second-order derivative
is proportional to the bending moment in a simply supported beam. Thus the fol-
lowing extra constraint equations can be derived:

d’P, (u):l
=0

o =-3P, +3P, -2P,—-P, =0 (6.60)

d*P, (1)

du2 ] =2[3(Pn —Pn-l)_zpn—l —Pn]
u=l1

(6.61)
+6[2(P,_,~P)+P,_, +P ]=0



Rearranging Equations (6.60) and (6.61) yields
2F) + P; =3P, - 3P, (6.62)
2P +P =3P -3P, (6.63)

We rewrite Equation (6.59), moving P; and P! from the right-hand side into the
variable vector on the left-hand side and adding Equations (6.62) and (6.63) at the
beginning and end of the equations in Equation (6.59). Then the following equation
is derived.

2 1.0 - - - 0 0]p] [3P-3P]

1 410 . 0 Of|p, | [3P,—3P,
01410 . . .| _|3P; =3P (6.64)
0 0 01 4 1

00 . . 0 1 2fjp.| | l

We can solve Equation (6.64) for (n + 1) unknowns, P, P,...,P, from(n+1)
equations.



Clamped or Free Ends

Figure 6.12 illustrates two different interpolation curves obtained from the
same data points: one under the clamped-end condition and the other under the
free-end condition. Note that the interpolation curve under the free-end condition
tends to be flat near the ends.

Clamped-end condition

Free-end condition



Disadvantages of Cubic Splines

The order of the curve is always constant regardless
of the number of data points. In order to increase
the flexibility of the curve, more points must be
provided, thus creating more spline segments which
are still of cubic order.

The control of the curve is through the change of the
positions of data points or the end slope change.
The global control characteristics is not intuitive.



David F. Rogers




