CAD - How Computer Can Aid Design?

- Automating Drawing Generation
- Creating an Accurate 3D Model to Better Represent the Design and Allowing Easy Design Improvements
- Evaluating How Good is the Design and Finding Design Flaws – Analysis (FEA)
- How to Improve the Design (where to start and what to change) – Sensitivity Analysis
- Optimizing the Design Optimization

Finite Element Analysis (FEA) or Finite Element Method (FEM)

- The Finite Element Analysis (FEA) is a numerical method for solving problems of engineering and mathematical physics.
- Useful for problems with complicated geometries, loadings, and material properties where <u>analytical</u> solutions can not be obtained.

Introduction to

Pro/MECHANICA

What is Pro/Mechanica?

- Pro/MECHANICA is an <u>integrated</u> and also <u>independent</u> Finite Element Analysis (FEA) module of Pro/E CAD/CAE/CAM system.
 - Pro/MECHANICA STRUCTURE
 - Pro/MECHANICA THERMAL
 - Pro/MECHANICA MOTION

Function	Operation	Action
Selection (click left button)		entity or command under cursor selected
Direct View Control (drag holding middle button down)	MMB	Spin
	Shift + MMB	Pan
	Ctrl + MMB (drag vertical)	Zoom
	Ctrl + MMB (drag horizontal)	Rotate around axis perpendicular to screen
	Roll MMB scroll wheel (if available)	Zoom
Pop-up Menus (click right button)	RMB with cursor over blank graphics window	launch context- sensitive pop-up menus

Pro/Mechanica <u>Structure</u>

- Static, Buckling, Contact, and Pre-stress Analyses
 - Linear static stress analysis -- most structures, except nonlinearly elastic materials (such as rubber) and structures with large deformation (such as shells) (WF4 with nonlinear analysis capability)
 - ◊ Bucking analysis -- stability of slim posts.
- Vibration
 - Modal analysis (mode shapes and natural frequencies) dynamic and vibration problems.
- Sensitivity Study (identify design parameters)
- Optimization (identify the best values of design parameters)

<section-header><section-header><list-item><list-item><list-item><section-header><section-header>

- Integrated (within Pro/E)
 - Easy design change
 - Cannot see mesh, less FEA
- Linked (Pro/E & Pro/M)
 - Both interfaces; combination of the other two modes
 - Comparably more difficult to use
- Independent (Pro/M)
 - Strong FEA
 - Independent to Pro/E; hard to modify

