Introduction to Design

Optimization

Various Design
Objectives

Minimum Weight
(under Allowable
Stress)

.

A PEM Fuel Cell Stack
with Even Compression
over Active Area
(Minimum Stress
Difference)




A PEM Fuel Cell

Stack Multi-
Functional Panel with
S Ideal Stiffness — to
Accommodate
Thermal- and Hydro-
Expansions

= (Minimum Difference
between Ideal
Stiffness and

Calculated Stiffness):

Find a panel design with

the ideal stiffness.

Minimum Maximum
Stress in the Structure
Optimized Groove Dimension

to Avoid Stress Concentration
or Weakening of the Structure




Engineering Applications of Optimization

* Design - determining design parameters that lead to the best
“performance” of a mechanical structure, device, or system.

“Core of engineering design, or the systematic approach to design”
(Arora, 89)

* Planning
— production planning - minimizing manufacturing costs
— management of financial resources - obtaining maximum profits
— task planning (robot, traffic flow) - achieving best performances

» Control and Manufacturing - identifying the optimal control
parameters for the best performance (machining, trajectory, etc.)

+ Mathematical Modeling - curve and surface fitting of given data
with minimum error

Commonly used tool: OPT function in FEA; MATLAB Optimization Toolbox

What are common for an optimization
problem?

There are multiple solutions to the problem; and the
optimal solution is to be identified.

There exist one or more objectives to accomplish and a
measure of how well these objectives are accomplished
(measurable performance).

Constraints of different forms (hard, soft) are imposed.
There are several key influencing variables. The change
of their values will influence (either improve or worsen)
the “measurable performance” and the degree of
violation of the “constraints.”




Solution Methods

» Optimization can provide either
— a closed-form solution, or
— a numerical solution.

* Numerical optimization systematically and efficiently adjusts
the influencing variables to find the solution that has the best
performance, satisfying given constraints.

* Frequently, the design objective, or cost function cannot be
expressed in the form of simple algebra. Computer programs
have to be used to carryout the evaluation on the design
objective or costs. For a given design variable, a, the value of
the objective function, f(a), can only be obtained using a
numerical routine. In these cases, optimization can only be
carried out numerically.

Computer Program

a (no simple algebra) flo)

e.g. Minimize the maximum stress in a tents/tension structures using FEA.

Definition of Design Optimization

An optimization problem is a problem in which
certain parameters (design variables) needed to be
determined to achieve the best measurable
performance (objective function) under given

constraints.




Classification of the Optimization Problems

+ Type of design variables
— optimization of continuous variables
— integer programming (discrete variables) (examples)
— mixed variables
+ Relations among design variables
— nonlinear programming eg. f(X)=A4e™ +Bx,
— linear programming eg. f(X)=cx +cx, +...+¢,x,
* Type of optimization problems
— unconstrained optimization
— constrained optimization (examples)
+ Capability of the search algorithm
— search for a local minimum
— global optimization; multiple objectives; etc.

Automation and Integration

* Formulation of the optimization problems
— specifying design objective(s)
— specifying design constraints
— identifying design variables
+ Solution of the optimization problems
— selecting appropriate search algorithm
— determining start point, step size, stopping criteria
— interpreting/verifying optimization results
 Integration with mechanical design and analysis

— black box analysis functions serve as objective and
constraint functions (e.g. FEA, CFD models)

— incorporating optimization results into design




An Example Optimization Problem

Design of a thin wall tray:

The tray has a specific volume, V, and a given height, H.
The design problem is to select the length, /, and width, w,
of the tray.

Given Wh=V h=H

A “workable design”: %

Pick either / or w and solve for others

An “Optimal Design™

» The design is to minimize material volume, (or weight),
where “T” is an acceptable small value for wall thickness.

Minimize V. (w,Lh)= T(le + 2£h+ 2wh)
ortom sides
wh=V
subject to h=H
(20
w20

constraints (functions)

Design variables: w, I, and h.




Standard Mathematical Form

m}n . T(wl+2lh+2wh) - objective function
w.r.t.lw,
Subject to Wh—V =0 - equality constraints
h—H=0 } - inequality constrains
-1<0 - variable bounds
-w<0
3= [l, w,h]T - design vector

- for use of any available optimization routines

Analytical (Closed Form) Solution

« Eliminate the equality constrains, convert the original problem into a
single variable problem, then solve it.
from h=H & IwH=YV; solveforl: =

thus

r
Hw

. 14 v . VoV
T(—w+2— H+2wH T(—+2=+2wH) =
min (wa T WH) oy min (H " wH) = f(w)

from 4 v . |V
CAC) =0, wehave w* =—, then thedesign optimum w' = ,|—

dw H H
- a stationary point
» Discard the negative value, since the inequality constraint is violated.
* The optimal value for I




Vi ()

Graphical
Solution

wsaw OF /20

no width & length limitations
no violated constraints.

(W20)

Change of Constraints and Their Influence to the Final Solution

Consider a modified problem:

';“iﬂ Vo=T(wxl+2xlxh+2xwxh)

h
Iwh=V
h=H X " w l
s.t. S0 Handled as an unconstrained problem and found w
w2
120
[ wiW maximum width / add a new constraint ]
Follow the previous example:
unconstrained optimum: W = J%'
V Vu h
e For Wew® = |—
H
W /

F W
H

The constrained optimum is not changed, no active constraints.

vV
F W '°="—
L] or “w H

©
wr=W=zw

V T W
i

= "

Constraint w<# is “active.”

Vie

r




Procedures for Solving an Eng. Optimization Problem

Formulation of the Optimization Problem

— Simplifying the physical problem

— identifying the major factor(s) that determine the performance or outcome
of the physical system, such as costs, weight, power output, etc. — objective

— Finding the primary parameters that determine the above major factors
- the design variables

— Modeling the relations between design variables and the identified major
factor - objective function

— ldentifying any constraints imposed on the design variables and modeling
their relationship — constraint functions

Selecting the most suitable optimization technique or algorithm to
solve the formulated optimization problem.

- requiring an in-depth know-how of various optimization techniques.
Determining search control parameters

- determining the initial points, step size, and stopping criteria of the
numerical optimization

Analyzing, interpreting, and validating the calculated results

An optimization program does not guarantee a correct answer, one needs to
— prove the result mathematically.

— verify the result using check points.

Standard Form for Using Software Tools for
Optimization (e.g. MatLab Optimization Tool Box)

Minimize f(x) (1)
with respectto  x=(x,x, x,)
subject to hy(x) = {0} k=1-p (2
g (D=0} i=1-g
0 <x, <x® i=1, N (4)
() areal valued function (objective function)
+ — aN-component vector (design variables)
e,2 equality constraints
g3 inequality constraints
e.4 — variable founds Use of MATLAB

Optimization Toolbox




Notes

- A maximization problem can be converted into a minimization
problem by:

max  f(¥)= min—— OF m'm{—f(})} :
o ©
maa min

* ¢,4 can be converted into ,3:
x,-x"M<0
%P -x <0

adding 2N inequality constraints

Assignment: (notebook only, not to turn in)

« Consider a circular tray, find the minimum v, with »=#, and
also with » free. The diameter of the tray, d, is a design
variable.

« Compare the above two “competing” design in terms of v_.

One Dimensional Search Methods

The 1-D Search Problem - Basis for ND Optimization Search Techniques

min f(a) Ffeoty . )’

®,. ’
I

In many cases e—0t_

Often Black-box Function

Computer Program
a (no simple algebra) flo)

an example: tent design
(maximum stress less than allowed value)
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1-D Optimization

[Le i
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The Search D —

— We don’'t know the curve. Given a, we can calculate f(o).

— By inspecting some points, we try to find the approximated
shape of the curve, and to find the minimum, o*
numerically, using as few function evaluation as possible.

The procedure can be divided into two parts:
a) Finding the “range” or region “ known ” to contain o.* .

b) Calculating the value of a* as accurately as designed or as
possible within the range — narrowing down the range.

Search Methods

» Typical approaches include:
— Quadratic Interpolation (Interpolation Based)
— Cubic Interpolation
— Newton-Raphson Scheme (Derivative Based)
— Fibonacei Search (Pattern Search Based)
— Golden Section Search
* |terative Optimization Process:
— Start point o, > OPTIMIZATION — Estimated point o,
— New start point oy, 4

— Repeat this process until the stopping rules are satisfied,
then o* =a, .

11



Iterative Process for Locating the Range

« Picking up a start point, o, and a range;
Shrinking the range;

feet)
* Doubling the range; )
+ Periodically changing the sign. F\I ’T i
Typical Stooping Rules: o
‘f(new a’)— f(last a*)‘ ‘new a’ —last a*‘
" <& or " <&
‘f(new a )‘ new o

Quadratic Interpolation
Method

fla)<= H(a)=a+ba+ca’

* Quadratic Interpolation uses a quadratic function, H(«), to
approximate the “unknown” objective function, f{).

+ Parameters of the quadratic function are determined by several
points of the objective function, f{a).

* The known optimum of the interpolation quadratic function is
used to provide an estimated optimum of the objective function
through an iterative process.

+ The estimated optimum approaches the true optimum.
+ The method requires proper range being found before started.
« ltis relatively efficient, but sensitive to the shape of the objective
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N-Dimensional Search

The Problem now has N Design Variables.

Solving the Multiple Design Variable Optimization
(Minimization) Problem Using the 1-D Search Methods
Discussed Previously

This is carried out by:

— To choice a direction of search

o To deal one variable each time, in sequential order - easy,
but take a long time (e.g. x;, x,, ..., Xy)
o To introduce a new variable/direction that changes all
variables simultaneously, more complex, but quicker (e.g. S)
— Then to decide how far to go in the search direction (small
step ¢ = Ax, or determining o by 1D search)

16
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Large Step 1-D Search

+ Two Key Questions:

— Search Direction — In what direction should we move (or
search)?

— Next Point — How far we should go or where do we stop
along this move/search direction?
+ Search along the Coordinate Direction (Univariate Search)
* Introduce a New Variable a which represents how far we
should go along the selected search direction
» The value of «a is determined by a 1-D optimization
problem

Min f()

wr.il o
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X, =old X is aknown point
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now in the N-D space, there is only one variable:

Gradient Based N-D Search

« The Problem has N Design Variables.

+ Solving the Multiple Design Variable Optimization
(Minimization) Problem Using the 1-D Search Methods

» This is carried out by:

— To identify the search/move direction, S — the direction that
has the maximum down hill slope (the direction opposite to
the directive direction)

— To introduce a new variable o that represents how far do
we move along the identified search/move direction

— To determine this variable o by 1-D minimization using o
as the design variable.
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on Variable a
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= v

now in the N-D space, there is only one variable: «
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Answer to this question leads to more advanced search algorithms.

Design Optimization

Objective: minimize the maximum stress in the structure
Constraints: maximum deformation of the L bracket

One design
variable
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Result of the Optimization
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Best groove size: 0.13 (with minimum Maximum Stress)

An Different Design Optimization

Objective: minimize the weight (mass) of the structure
Constraints: maximum load and deformation

. Define relations to control the model generation (two design
parameters; one is the groove size and the other is the overall
fixture size.)

Two design
variables

. Specify ranges of variables,
objective, and constraints

. Perform the optimization
(about 15 min.)

. Results plotting and
convergence check
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Optimal Design

Optimization Pass Optimization Pass

The Total Mass and Strain Energy Convergence Plots in the Optimization

po= X Formulation of Different Design
\. 2 | Optimization Problem

Best Performance Design — Lightest Coffee Mug

Minimize Mass of the mug as a function of mug dimensions
(D: Diameter, H: Height, T: Thickness) -- Objective Function

Subject to
Mug Volume > A Constant -- Inequality Constraint
H/D =1.65 -- Equality Constraint
D,H, T>0 -- Variables

Find: D*, H*, and T" -- Optimum

22



Formulation of Different Design —=

Optimization Problem

Lowest Cost Design — Cheapest Coffee Mug

Minimize Mfg. Cost of the Mug

Subject to

Mug Volume > Constant 1
Mug Mass < Constant 2
Strength > Constant 3

H/D =1.65

D, H, T, Material, Tolerances, etc.

Find: D*, H*, and T etc.

-- Objective Function

-- Inequality Constraint

-- Equality Constraint

-- Variables

-- Optimum

Are you ready for the first quiz?
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