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Curves
- Foundation of Free-form Surfaces

Why Study Curves?

« Curves are the basics for surfaces

* When asked to modify a particular entity on a CAD
system, knowledge of the entities can increase your
productivity

« Understand how the math presentation of various curve
entities relates to a user interface

» Understand what is impossible and which way can be
more efficient when creating or modifying an entity




Why Not Simply Use a Point Matrix to
Represent a Curve?

» Storage issue and limited resolution
* Computation and transformation

« Difficulties in calculating the intersections or curves
and physical properties of objects

« Difficulties in design (e.g. control shapes of an
existing object)

» Poor surface finish of manufactured parts

Advantages of Analytical
Representation for Geometric Entities

A few parameters to store

» Designers know the effect of data points on curve
behavior, control, continuity, and curvature

» Facilitate calculations of intersections, object
properties, etc.
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Analytic Curves vs. Synthetic Curves

* Analytic Curves are points, lines, arcs and circles,
fillets and chamfers, and conics (ellipses, parabolas,
and hyperbolas)

» Synthetic curves include various types of splines
(cubic spline, B-spline, Beta-spline) and Bezier
curves.

Curved Surfaces

« In CAD, We want to find a math form for representing curved
surfaces, that :

(a) look nice (smooth contours)
(b) is easy to manipulate and manufacture
(c) follows prescribed shape (airfoil design)

To study the curved surface, we need to start from curves.
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Parametric Representation

* a curve * a surface

P(u)= [x(u),y(u),z(u)]T P(u,v)= [x(u,v),y(u,v),z(u,v):lr

z
A A
u=const
Umax
p(XY.2) fq\ v=const
Umin _
p(u) y
3 >

We can represent any functions of curve (curved surface) using parametric equation.

TABLE 55
Methods of defining synibetic curves

Methed

1. Cuhie spline
T Herrte )

A given ser of data paints and
start and end =lopes

().

2 Bezfer curves

A given set of data points

().

3. Bospline cwrves

{3} Approximale a given so1 of data painz

(¢} Inferpolate = given set of data points
Surface fitting
(CZ)_‘ using discrete data

(C) - ith order continuity




Parametric Representation of Lines

* How is a line equation converted by the
CAD/CAM software into the line database?

» How are the mathematical equation correlated
to user commands to generate a line?

z PyP1 P, u=1

P=P +(P-P)
P-P =u(P,-P)

/ y P =P +ulP,-R), O<u<i]

P =P +ulP,-P) O<u<l

x=x, +u(x, —x)
y=n+u(y,—»n) 0<u<l

z=2z +u(z,-z,)
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Representation 1 (Non-parametric)

@

Circle

x2+y? =1 I

x =u (parameter)

y=~l-u?

e poor definition

e square root complicated to compute

F'y

0

0.25 0.5 0.75

Circle

Representation 2 /2

(b)

= COSu
= Sin u

e better definition than (a)

e but still slow
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; Ay P
Circle N R N
Representation 3 Yn o "
dpi
Recursive approach 'tﬁ ' ' X’
x, = rcos @
{y = rsin 6 =Py Xn+1  Xn

x,,, =rcos( & + d@)=rcos @ cos d@ — rsin 6 sin do

{xﬁl = x,c0s dO — y,sin d6

P
y,..=y,c08 d@ + x,sin do n+l

Observation: curves are represented by a series of line-segments

Similarly all conic sections can be represented.

Ellipse

x=/x |+ Acos@
y +Bsind 0<60<L2rx

zZ =

The computer uses the same method as in the Representation
3 of circle to reduce the amount of calculation.
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Parabola

Parametric Representation of
Synthetic Curves

» Analytic curves are usually not sufficient to meet geometric
design requirements of mechanical parts.
* Many products need free-form, or synthetic curved
surfaces.
» Examples: car bodies, ship hulls, airplane fuselage and
wings, propeller blades, shoe insoles, and bottles
* The need for synthetic curves in design arises on
occasions:
= when a curve is represented by a collection of measured
data points and (generation)
= when a curve must change to meet new design
requirements. (modification)
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The Order of Continuity

The order of continuity is a term usually used to measure
the degree of continuous derivatives (C°, C1, C2).

y y
i=2 i=2
i=1 =3 i=1 i=3
»> ¥
Simplest Case Linear Segment High order polynomial may lead to “ripples”
YV, = +ax V=g +a;x+..+a,x"

Splines — Ideal Order

Splines— a mechanical beam with bending deflections, or a
smooth curve under multiple constraints.

2 (3)
2 A (4)/
.,
V()= R(x)= M) _ax+b,
El EI

lla ; b , . :
X)=—|2Lx"+2Lx"+cx+d. Cubic Spline
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Hermite Cubic Splines
7)(”): [x(u),y(u), Z(“)]T Cubic Spline

3 2
x(u) =Ca U +Cyu” +C U+Cy, 3x4=12
3 2 coefficients to
Ul=c, u +c, u" +c, u+c )
y ( )) 3y 2y 1y 0y be determined

3 2
Z(Ll Gy U +szu +clzu+coz

p(u)=[x(u) »(u) Z(u)]Tle:‘Cl.ui (0<u<1)

=[u3 u’ ul} =[U"][C]

o ' qu Nﬁl wﬁl

Hermite Cubic Splines

P :Z u' =Cu’ +Cu’ +Cu* +C,

B =C
u= 0 _;0, _O .
Two y =0 4x3 equations
End = == =4 from two
Points B =C+C,+C +C, )
u=1 o L control points
b =3C,+2C,+C
Boundary Conditions: EJ
Location of the two u=1
end points and their u= _
slopes P -
-~ 1
5 . I
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Hermite Cubic Splines

G =5
@1 — ]30 12 unknowns
_ . . and
C,=3(R-FK)-2K-H 12 equations
Co=2B-B)+ B+ P
_— 3 —_ . —_ —_— —_ —_
P =) Cu' =Cu’+Cu’+Cu'+C
IZ=0: i 3 2 ! 0 Al
parameters
P(u) = (2u° —3u® +1)P, + (~2u° +3uP)B  geommned
+@W® - 2u? +u)P, + u® —u?)E
Hermite Cubic Splines
O P(u)=(2u®-3u®+1)P, +(-2u’® +3u®)P,
+(® = 2u® +u)P, + (u® —u?)PE
2 —2 1 1] [P Based on:
? Location of
_ [us Wl u 1] -3 3 -21 1_)1 the two end
0 O 1 0| [P points and
i 1 0 0 0 _l. their slopes
=u" M,V 0<u<l

O P'(u) = (6u® —6u) P, + (—6u® +6u) P+ (3u® — 4u +1) P,

+@Bu’-2u)P, 0<u<l
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Joining Cubic Spline Segments

P©) =B,P 0)=P, P, (1) =P

m

ol

=P, (0

m,m+1?

+11 pmﬂ(l) = P‘erl

m

2 curve segments & 24
unknowns

6 egs. from first point,
6 egs. from last point,
4x3 eqs. from joining point

Go through center point, have same 15t and 2"? order derivatives

Joining Cubic Spline Segments

P (u) = (6u® —6u) P, + (—6u® + 6u) P, + (3u® —4u+1)P, + (3u® —2u)E.  0<u<1

P’ = (12u—6)P, +(~12u +6) P, + (6u—4) B, + (6u — 2) B

P'(u,=1) = P'(u, =0)

P'(u, =1)=6P, —68 + 2P, + 4P,

P'(u, =0)=-6P, +6P, —4P — 2P,

3/2/2009
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Questions on Cubic Splines

What are the control parameters to change the
shape of a cubic spline?

What if | want to change a local curvature?

Is there any way | can increase the order of
continuity on a cubic spline?

Can | improve the order of continuity by adding
more points?

Disadvantages of Cubic Splines

The order of the curve is always constant regardless
of the number of data points. In order to increase
the flexibility of the curve, more points must be
provided, thus creating more spline segments which
are still of cubic order.

The control of the curve is through the change of the
positions of data points or the end slope change.
The global control characteristics is not intuitive.

3/2/2009
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Bezier Curve

« P. Bezier of the French automobile company of
Renault first introduced the Bezier curve.

» A system for designing sculptured surfaces of
automobile bodies (based on the Bezier curve)

- passes p, and p, , the two|end points. |

- has end point derivatives:

- uses a vector of control points, representing the n+1 vertices of a
“characteristic polygon”.

Math Expression

Pe)=3 78, G)

n — segment(each polygon)
n+1 — vertices (each polygon) and number of control points
uelo, 1]

3/2/2009
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Bernstein Polynomial

B )= 6w

B, ,(u) is a function of the number of curve segments, n, and i.

=1 =
it(n—i) o 2! o 21 0

An Example: If n = 2,
then n+17 = 3 vertices

i 0 1 2
1 1 1 1
nl 2, 21 2
it —i) o 2 o 21 0

;(u) - gEBi,n (u) B, (u) = i!(T-i)!ui(l—u)"_i

pu) =1x(L—u)? p, +2xu(l—u) p, +1xu’p,
p'(u) ==2(1—u) py + 2(1—2u) p, + 2up,

[_5(0) = 130
P =p,

13'(0) = 2(?1 _ﬁo)
Z’I(l) = 2(132 _1_51)

3/2/2009
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The order of Bezier curve is a function of the number of control points. Four

control points (n=3) always produce a cubic Bezier curve.

", B
' o
r, ’4{’5
J"-. i
P./Ji'—t\i\-.r/’h
=
el
R i
T
- )
= Y
i b
/—D !
. -L"'-\. .!l
TR
-P|T-—I"|-la._____________1r.1
i |
! d
! i
i i
o | P ﬁ_____q_d =

40} Chsipgsag a v riow Fa
*

L =T v

e

Fii

iy
1] Specitdng mreitple minekBam pois of o veshez { “f'u
* order

MGLURE 546
Muodifcalionn of cobic Beier curve,
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An Example
The coordinates of four control points relative to a current WCS are given by

P=[2 2 of ,R=[2 3 o] ,R,=[3 3 0] &R, =[3 2 Of

Find the equation of the resulting Bezier curve. Also find points on curve for

u=01,,%.3 &1

3/2/2009
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Solution

P(u)= FByz+ BB 3t P,B,;+ BB, O<uc<l

B,,(u)

€0 Besi=—x

Bisiw =

= ! ) !ui(l—u)n_i

Mn—i
3| H':l-”.- II-HJ’

Wiru) = 3uy-wt

3!
1 2!

P(u)= B(1—u)’ +3Bu(1-u)’ +3Pu® (1-u)+ By’ 0<u<l

Substituting the u values into his equation gives

PO)=F=[2 2 of

(U=0,% %, %1

P(Ejzzlg+§a+ipz+ip3:[2.1se 2.563 0
4) 64°° 64" 64 ° 64

P(j 1p P, + P+ P+1P [25 275 o]
8 8
p(i"’j 1p.2 +2—7P2+2—7P3:[2.844 2.563 0]
4) 64 64 ° 64
P1(2, P2(3,3
er ot “3 QT

u=1/2

O - control points, P, P, P, &P,

@ - points on curve, P(u)

PO(2,2)

3/2/2009
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Improvements of Bezier Curve Over
the Cubic Spline

* The shape of Bezier curve is controlled only by its

defining points (control points). First derivatives are not
used in the curve development as in the cubic spline.

* The order or the degree of the Bezier curve is variable
and is related to the number of points defining it; n+1
points define a nth degree curve.

This is not the case for cubic splines where the degree is
always cubic for a spline segment.

» The Bezier curve is smoother than the cubic splines
because it has higher-order derivatives.

B-Spline

* A Generalization from Bezier Curve
» Better local control

» Degree of resulting curve is independent
to the number of control points.

19



Math Representation

ﬁ(u):jZOExNi’k(u) O<u<u,,

(k-1) degree of polynomial with (n+1) control points

— P, P, P n+1 control points.
— N, (u) B-spline function (to be calculated in a recursive
form)
N, (u) N, ()
N @)= @-u)———+ (., —u)———
Ui —Y; Uip —Uin
Parametric Knots
N, (u) N, 1)
Ni,/c(u):(u_ui) - +(ui+k_u) —=
U1~ Y, Uig Ui

u; : parametric knots (or knot values), for an open curve B-spline:

0 j<k
u; =4 j—k+1 k<j<n
n—k+2 j>n

where, 0 < j < n+k, thus if a curve with (k-7) degree and
(n+1) control points is to be developed, (n+k+1) knots
then are requiredwith 0 <u < u,, =n—k+2

3/2/2009

20



Knot Value Calculation

Ni,k—l(u) N (qu —u) Nz+1,k71(“)

Ui — Y, Ui —Uig

N, () = (u—u)

M:,x = ‘F ': Ni)lf—l) ‘\jul b= )

P
K=¢ Noa| Noo| Moo | Nao {23

k=3 Nos |l Nis | Nos | Np | Mg ise T
K2 | Noa | Mo | Mex| Noa| Noo| Mow| <2£
M v e v e o] e

n =3, 4 control points
k=4, 4-1=3 cubic polynomial
0<j<n+k=7

n increases — wider base
k increases — wider & taller

Calculation of N, ,(x) Function

;(u):zExNi,k(u) O<u<u,,
i=0
N, N
Nirk(u) = (u _ui)L(u)+ (u,, —u)Ll(u)
Ui — Y, Ui —Uip

1 u<u<u,

N.,=1 u=u, and u<u, and u—u; =1

0 otherwise

3/2/2009
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Role of B-Spline Function

(Calculating Weights v, (u) from Nearby Control Points)

) L AN )
“““ _ 0.7%‘""'" ; k=3
:z'_n;ar 05 77 \ Quadratic
05
‘ uy | i u,
0o 1 2 0o 1 2 3 4

Properties of B-Spline

* Number of control points independent of degree of
polynomial

verte Quadratic B-Spline k=3
Cubic BSpline k=4
Fourth Order B-Spline k=35

Linear k=2

vertex

The higher the order of
the B-Spline, the less the
influence the close
control point

vertex

vertex n=3; 4 control points

3/2/2009
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Properties of B-Spline

¢ B-spline allows better local control. Shape of the curve
can be adjusted by moving the control points.
e Local control: a control point only influences k segments.

Properties of B-Spline

Repeated values of a control point can pull a B-spline
curve forward to vertex. (“Interactive curve control”)

& = 3 for all curves

— One puint at P, Add more
t Two points at £
Same oro!er L Three points at Ps repeated
polynomial control points
to pull the
curve

3/2/2009
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_ ' {0} Chsmgiag o v oy
Different order *
polynomialﬁ __’_____,E,':?:'-r——---g)’- Bezier Curve
P .
Y

L
"r.l-l*

it Specibang meslitple goineidam ponile a5 a verlez {
[ ] L}

FIGLRE 546 arder
MmdiEcationy of cobic Bexier cunse. :

An Example

Find the equation of a cubic B-spline curve defined
by the same control points as in the last example.

How does the curve compare with the Bezier curve?

3/2/2009
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Example 5.19. The coordinates of lour control points relative to a current WCS are
given by

Fo=[2 2 017, P,=[2 3 0F, P,=[3 3 0", and Py,=[3 2 0]

Find the equation of the resulting Bezier curve. Also find points on the curve for
u=04 4 2, and 1.

Sodution, Equation (3.91) gives

[Pw) =PyBo, + PB,, + PiBy + PBy,,  O=usxt|

Using Eqgs. (5.92) and (5.93), the above equation becomes

‘ Plu) = Py(l — u)® + Pl — u)* + 3P el — u) + P, u?, OD=uw=l ‘

--— P2 (3. 3)

Example Problem for
Finding the Bezier Curve

. FIGURE 549
Pail2. 2) Pl ) Bezier curve and generated points,

Example Problem for Finding the Bezier Curve

Plu) = Pyll — u)* + Pl — u)* + AP0l = u) + P, u?, 0=

Fo=[2 2 0", P,=[2 3 0)F, P,=(3 3 0], and P,=[3 2

<1

07"

Substituting the v values into this equation gives
PO)=P;—-[2 2 O]
1 27 27 9 1
| ==P,+ =P, +—P,+—Py=[2156 2563 0]
P(4) 64”+6.-1] f'l4],+é’4j [2.156 2563 0]
1 |

3 3 1
—|==Py+= - - P,=[25 275 z
P(z) 3 “+EP’+3F"+EP3 [ 275 0]

P . P, 4 gi’ '2?1' '”F = [2844 2363 0]
JmaPtah gt P-4 256 0
Pl)=P,=[3 2 0]"
3
Observe that }, B, ; is always equal to unity for any u value. Figure 5-49 shows the

=0
curve and the points.

3/2/2009
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Finding the B-Spline Curve for the Same Example Problem

Example 5.21. Find- the equation of a cubic B-spline curve defined by the same
control points as in Example 5.19. How does the curve compare with the Bezier

curve?
@ cubic curve ; K=4, hupgh_,ts‘ N=3 (o, 1., 2, 3)
[ -] i<k=4
Uj""'{j-ICH _—.-.{j-s 4eje3 R0 P A
n-k+1 I i=3 Aol
D) = ntk =7
@ [paw) = T B - Ni (W |
[ W:<uW < iis,
Ny, = ‘[ =
‘ o sthaswras
Ni.xq4(0) gy Moanea ()
ik = CU‘WJE.':__E-‘__W + (Uiee —U) Uipe =W

Solution. This cubic spline has k = 4 and n = 1. Eight knots are needed to calculate
the B-spline functions. Equation (5.106) gives the knot vector

Values to be Calculated

@ | [wg oy Wy wy wy wy wy “1]'
The range of u [Eq. (5.108)] is 0 = u < 1. Equation (5.103) gives
@ P{“}=§GND.4+EJN1.I+ﬁIN!.4+ﬁl”].i1 O=uszl

N:,x = ‘F C Ni;r—l) ‘\jul »le=1 .)
———

K=+ Noa| Now| Ny | Nig {=3

k=3 Noa f Nis| Nas | Ny | Agp EE T
K2 | Nop | My | Moa| Noo| Nop| Mow| <*%
K= qu! ‘ N,..' N*.r( ‘ ’VS,II ‘ Uq,ll N’,'I ‘ Ny | 4<6

n=3; 4 control points . .
n increases — wider base

k=4 4_]:3, cubic polynomial k increases — wider & taller i s
w: 0<j<n+k=7

3/2/2009
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Calculating the Knots, u;

cubic curve . k=4, {fowrpoinfs. n

=3 (6,1.,2, 3)

] [, i<kE=+4
- - L S [F} = n-k+2
uj = {j-FH -‘-'-{J"i 4ejn3 TsuL +aat
n-k+l | i=>3

0= = n+tke = ¢

[ug oy wy oy wy wy wg wy] ns [0 O O 1 1 1 1]

1 u<u<u,

Niy=1 u=uand u<u, and u—u, =1

0 otherwise

Calculating V, ,

0,
0

kneTs [ Wo U Us th, g ¢l L H;]

© Nix., CE=#) 606 o0 o0 1 1 4 |

sdi=0.1 2 UWi=0 €U = U =0

(v wu=0)

= = ! H=o
g Banpe= { o elnu‘u..re
ad=3 Ui=0 = U = Uy = |

Cer oUW =1 )
o0eu <€
Ny = lesue |

0, otherwise

al=4.%56 Ui e €U € Uie; = |

Cev U={()
[ U=
Ne, = Ns.y = Ns; = { o e(,,fu{,u

3/2/2009
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Calculating N, ;

To caleulate the above B-spline functions, use Eqs. (5.104) and (5.105) together with

the knot vector as follows: R(2,3) )
T T T
or v VUl elsewhere " |
I
k=1 Ny, = 1, b=wuxl |
. ' 0, elsewhere |
kST
162 1, u=1 !
NLNS':ﬁG" ={U. elsewhere PoC2. 2) P;(!,l)
N,y Ny uNg s  (—uN, ,
—fy — ) —2b = pile X Al
No.2 = (u — ti Ly “D+{u; Hluz—lh 0 & 4]
Ny LN ully o (—uNg
Ni.l_lu_l"j]ua_ L'{“; u)”:—“z 0 | 0 =
N N, ulN, | (1 — N,
NlJ:{u_u’]u,i.:..l+L“‘_u)u‘i]u!=%+%={l—H}N;,l
a2 N N (1 — W
— fer 3.1 _ 1 41 _
ite€7 Nyz=lu ”‘}u,—u,ﬂ"’ u) — Ny + ully
! i N (1 — N
: 4 )/ i )
Ny g =lu—1y) B4 [ug — u) = 2l = (u 1) e.: L ERPE L%l g
) Uy — iy, Uy — Uy ] ]
N N T | 1
Ny = fu—tg) —2 + (uy —u) —21 M= lNgy A =y g
) — Wy o— liy, 0 £
Calculating N, ,
N N 0 0
No.y = lu “uJuJ j:‘u +luy - "Jul 1_':“ =45 +l—LrJ-Li =0
! ! N —ulN; ,
Ny \=[“—u1,—i!"—:'+¢u4—u3 Naa = u "!-“ u.}.._.--__-_“_u]zle
- Uy My lig = Uy i]
Naa Ny s )
Ny . - . + - 3 = uN | —uN il — w}N
K=3 Ny 3= (u—uy) —p—r—y (ug mu‘—u‘, uNy 5 + (1 — uNy , wl — wN, ,
LAY, N i N L !\"q_ .
L:, Nya=(u—u) _i.::} b (g u)uﬁi'iq-_u—,\“_l_,_“_u' 'C,)=“-'\'.'|
N N. . N, N
SNy g = — ) —E iy )2 = - )= (=22 =0
' g — Uy Hy — Uy 0 0
N J
Nn_-« = (W — ug) —— + (kg —u} LY E =l - U]]NJ_I
! Uy — Uy My = Uy
N N,
4 Ny = ) D=2y — )22 31— upN,
K= =4 Uy~ uy
N L) N ] Il
{tEEy N:A:ﬁ“—“:]u 3"u +iug—u];--'1—'r:r-=1-u‘[I-- ulN,
[t TR F= Ve &= M3
N N,
Ny = (u—uy) 2y {1y — Ui—'1=u!.|'\-'3_,
Hy = Uy Wy — Uy

3/2/2009
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Result

Substituting N; , into Eq. (5.115) gives
P(u) = [Po{l — u)® + 3P il —u)* + P, u’(l —uw) 4+ Pyu®IN, ,, O=us< [‘

Substituting ¥, , into this equation gives the curve equation as

‘ Plu) = Po(l — w)* + 3Pu(l — u)* + 3P0l — u) + Pyu?, O=u=l ‘

This equation iz the same as the one for the Bezier curve in Example 5.1%. Thus the
cubic B-spline curve defined by four control points is identical to the cubic Bezier
curve defined by the same points. This fact can be generalized for a (k — 1)-degree
curve as mentioned earlier,

n + 1 control points: 3+1=4
k — 1 degree curve: 4-1=3

4 control points — cubic polynomial

Non-uniform Rational
B-Spline Curve (NURBYS)

Rational B-Spline

;(u):;FiXRi,k(u) O<uc<u,,
h.N.
R, = ﬂ (h, —scalar)

k n
ZhiNi,k (u)
i=0

If #,=1then R, (u) =N, (u),itis the representation of a B-Spline curve.

Industry Standard Today!

3/2/2009
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Whet & AURBS ?
rationad and B- sppﬁ'u .
Py = % P Riwca) o€ U < Umax
precs ﬁmﬁ;,k ) = hi Niw s (4 -scalar,
S, he Neoptw
A horsgencons cowdinate vectar H =Lhe, b, find”

o thfroductol amel .a{_; baess ﬁmoi'[.‘n s d"ﬂ;cr'n-erf
by ﬁ::-, a/ge};rgr‘c rafio a;ﬁ fwe {pa@ﬂam.‘ds.

Zf hi={, Ruecw) = Myecu)

Development of NURBS

» Boeing: Tiger System in 1979
* SDRC: Geomod in 1993
 University of Utah: Alpha-1 in 1981

* Industry Standard: IGES, PHIGS, PDES,
Pro/E, etc.

3/2/2009
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Advantages of NURBS

» Serve as a genuine generalizations of non-rational B-spline forms
as well as rational and non-rational Bezier curves and surfaces

« Offer a common mathematical form for representing both standard
analytic shapes (conics, quadratics, surface of revolution, etc) and
free-from curves and surfaces precisely. B-splines can only
approximate conic curves.

 Provide the flexibility to design a large variety of shapes by using
control points and weights. increasing the weights has the effect of
drawing a curve toward the control point.

« Have a powerful tool kit (knot insertion/refinement/removal, degree
elevation, splitting, etc.

* Invariant under scaling, rotation, translation, and projections.

» Reasonably fast and computationally stable.

» Clear geometric interpretations
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Quick Questions

n + 1 —number of control points; & £ — degree of the curve (polynomial)

For B-spline, k should always be less than or equal to n+1. T or F?
why?

What are the two major advantages of B-spline over Bezier curve in
real design?

If k£ increases in its reasonable range, will the corresponding B-spline
curve move closer to the control polygon.?

What are the required user inputs to construct a Hermite Cubic,
Bezier, B-spline and NURBS curve segment?

By adding more control points in a small region when defining a
Bezier curve, one can manipulate the curvature of the curve without
affecting other curve sections. T or F.?

B-spline curves are identical to Bezier curves when k=n+1. T. or F?
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