
Introduction to Design 

Optimization:

Search Methods



1-D Optimization

• The Search 
– We don’t know the curve.  Given α, we can calculate f(α).
– By inspecting some points, we try to find the approximated 

shape of the curve, and to find the minimum, α*
numerically, using as few function evaluation as possible.

• The procedure can be divided into two parts:
a) Finding the “range” or region “ known ” to contain α* .
b) Calculating the value of α* as accurately as designed or as 

possible within the range – narrowing down the range.



Search Methods
• Typical approaches include:

– Quadratic Interpolation (Interpolation Based)
– Cubic Interpolation
– Newton-Raphson Scheme (Derivative Based)
– Fibonacei Search (Pattern Search Based)
– Golden Section Search 

• Iterative Optimization Process:
– Start point αo → OPTIMIZATION → Estimated point αk
→ New start point αk+1

– Repeat this process until the stopping rules are satisfied, 
then α* =αn .



Iterative Process for Locating the Range

• Picking up a start point, αo, and a range;
• Shrinking the range;
• Doubling the range;
• Periodically changing the sign.

Typical Stopping Rules:
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Quadratic  Interpolation 
Method
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• Quadratic Interpolation uses a quadratic function, H(α), to 
approximate the “unknown” objective function, f(α).

• Parameters of the quadratic function are determined by several 
points of the objective function, f(α). 

• The known optimum of the interpolation quadratic function is 
used to provide an estimated optimum of the objective function 
through an iterative process.

• The estimated optimum approaches the true optimum.
• The method requires proper range being found before started. 
• It is relatively efficient, but sensitive to the shape of the objective 
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Point update schemes based on the relations between 
the center point, α2, f(α2), and the present optimum: α*, f(α*).
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N-Dimensional Search

• The Problem now has N Design Variables.
• Solving the Multiple Design Variable Optimization 

(Minimization) Problem Using the 1-D Search Methods 
Discussed Previously

• This is carried out by:
– To choice a direction of search

o To deal one variable each time, in sequential order - easy, 
but take a long time (e.g. x1, x2, …, xN)

o To introduce a new variable/direction that changes all 
variables simultaneously, more complex, but quicker (e.g. S)

– Then to decide how far to go in the search direction (small 
step ε = Δx, or large step determining α by 1D search)



N-D Search Methods



N-D Search Methods
• Calculus Based

– Indirect method: knowing the objective function set the gradient
to Zero. If we need to treat the function as a “black box” we 
cannot do this. We only know F(X) at the point we evaluate the 
function.

– Indirect Method
• Steepest Descent method
• Different flavors of Newton methods

• Guided random search-combinatory techniques
– Genetic method

• Enumerative method: scan the whole domain. This is simple but 
time consuming



Steepest Descent or Gradient Descent
• the gradient of a scalar field is a vector field which points in the direction of 

the greatest rate of increase of the scalar field, and whose magnitude is the 
greatest rate of change. This means that if we move in its negative direction 
we should go downhill and find a minimum. This is the same path a river 
would follow. Given a point in the domain the next point is chosen as it 
follows:
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Steepest descent and ill-conditioned functions
• Gradient descent has problems with ill-conditioned functions such as the 

Rosenbrock function shown here. The function has a narrow curved valley 
which contains the minimum. The bottom of the valley is very flat. Because 
of the curved flat valley the optimization is zig-zagging slowly with small 
stepsizes towards the minimum.



Newton-Raphson Method
• The Newton-Raphson method is defined by the 

recurrence relation:

An illustration of one iteration of Newton's method 
(the function ƒ is shown in blue and the tangent line is 
in red). We see that xn+1 is a better approximation 
than xn for the root x of the function f.



Secant Method
• The Secant method is defined by the recurrence 

relation:

The first two iterations of the secant method. The 
red curve shows the function f and the blue lines 
are the secants.



Combinatory Search: Genetic Algorithm

• Valid for discrete variables
• One of the best “all purposes” search method.
• Emulates the genetic evolution due to the “survival of the fittest”
• Each variable value >a GENE, a binary string value  in the variable range
• Vector variables X> a CHROMOSOME, a concatenation of a random 

combinations of Genes (strings) one per type (one value per variable). A 
Chromosome (Xi) is a point in the X domain and is also defined as 
genotype.

• Objective Function F(X)>phenotype. F(Xi ) is a point in the Objective 
Function domain corresponding to Xi .



Genetic Algorithm

• Construction of a chromosome Xi(xi,yi,zi)
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Genetic Algorithm
1) Construct a population of genotypes (chromosomes) and evaluate the phenotypes

(objective function).

2) Associate a fitness value between 0 and 1 to each phenotype with a fitness function. 
This function normalizes the phenotype (objective function) and assigns to its 
genotype an estimate (between 0 and 1) of its ability to survive.

3) Reproduction. The ability of a genotype to reproduce is a probabilistic law biased by 
the value given by the fitness function. Reproduction is done as it follows:

Given 2 candidate for reproduction, we have:
a) Cloning. The offspring is the same as the parents
b) Crossover. Chromosomes are split in two (head and tail) at a random point 
between genes and rejoined swapping the tails. When crossover is performed 
Mutation takes place. Each Gene is slightly changed to explore more possible 
outcomes.

4) Convergence. The algorithm stops when all genes in all individuals are at 95% 
percentile





Genetic Algorithm. Example



Genetic Algorithm. Example



Genetic Algorithm. Example Results
Outcome:


