Introduction to Design
Optimization:

Search Methods
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— We don’t know the curve. Given o, we can calculate f(o).

— By inspecting some points, we try to find the approximated
shape of the curve, and to find the minimum, o*
numerically, using as few function evaluation as possible.

 The procedure can be divided into two parts:
a) Finding the “range” or region “ known ” to contain o* .

b) Calculating the value of o.* as accurately as designed or as
possible within the range — narrowing down the range.



Search Methods

« Typical approaches include:
— Quadratic Interpolation (Interpolation Based)
— Cubic Interpolation
— Newton-Raphson Scheme (Derivative Based)
— Fibonacei Search (Pattern Search Based)
— Golden Section Search

* |terative Optimization Process:

— Start point oo, > OPTIMIZATION — Estimated point o,
— New start point o,

— Repeat this process until the stopping rules are satisfied,
then o” =a., .



Iterative Process for Locating the Range

Picking up a start point, o, and a range;
Shrinking the range; Mo,

Doubling the range; Y
Periodically changing the sign. l ’I
‘new a —last o

Typical Stopping Rules:

f(new &)~ f(last o)
‘f(new a)
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new o




Quadratic Interpolation
Method

fla)e H(a)=a+ba+ca’

Quadratic Interpolation uses a quadratic function, H(x), to
approximate the “unknown” objective function, f(«).

Parameters of the quadratic function are determined by several
points of the objective function, /().

The known optimum of the interpolation quadratic function is
used to provide an estimated optimum of the objective function
through an iterative process.

The estimated optimum approaches the true optimum.
The method requires proper range being found before started.
It is relatively efficient, but sensitive to the shape of the objective
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Point update schemes based on the relations between

"'Hf Fi flisi .| the center point, o, f(a,), and the present optimum: o, f(c).
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N-Dimensional Search

The Problem now has N Design Variables.

Solving the Multiple Design Variable Optimization

(Minimization) Problem Using the 1-D Search Methods
Discussed Previously

This is carried out by:

— To choice a direction of search

o To deal one variable each time, in sequential order - easy,
but take a long time (e.g. x;, x,, ..., xy)

o To introduce a new variable/direction that changes all
variables simultaneously, more complex, but quicker (e.g. S)

— Then to decide how far to go in the search direction (small
step ¢ = Ax, or determining o by 1D search)




N-D Search Methods

Calculus based |

Guidad random
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N-D Search Methods

« Calculus Based
— Indirect method: knowing the objective function set the gradient
to Zero. If we need to treat the function as a “black box” we
cannot do this. We only know F(X) at the point we evaluate the

function.
— Indirect Method
» Steepest Descent method
« Different flavors of Newton methods
* Guided random search-combinatory techniques
— Genetic method
 Enumerative method: scan the whole domain. This is simple but
time consuming



Steepest Descent or Gradient Descent

the gradient of a scalar field is a vector field which points in the direction of
the greatest rate of increase of the scalar field, and whose magnitude is the
greatest rate of change. This means that if we move in its negative direction
we should go downhill and find a minimum. This is the same path a river
would follow. Given a point in the domain the next point is chosen as it

isoline

Gradient always normal to isoline



Steepest descent and ill-conditioned functions

« Gradient descent has problems with ill-conditioned functions such as the
Rosenbrock function shown here. The function has a narrow curved valley
which contains the minimum. The bottom of the valley is very flat. Because
of the curved flat valley the optimization is zig-zagging slowly with small
stepsizes towards the minimum.
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Newton-Raphson Method

The Newton-Raphson method is defined by the
recurrence relation:
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An illustration of one iteration of Newton's method
(the function f is shown in blue and the tangent line is

in red). We see that x,_, , is a better approximation
than x, for the root x of the function .




Secant Method

« The Secant method is defined by the recurrence
relation:

Tp —Tp
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The first two iterations of the secant method. The
red curve shows the function f and the blue lines
are the secants.




Combinatory Search: Genetic Algorithm

Valid for discrete variables

One of the best “all purposes” search method.

Emulates the genetic evolution due to the “survival of the fittest”

Each variable value >a GENE, a binary string value in the variable range

Vector variables X> a CHROMOSOME, a concatenation of a random
combinations of Genes (strings) one per type (one value per variable). A
Chromosome (X;) is a point in the X domain and is also defined as
genotype.

Objective Function F(X)>phenotype. F(X.) is a point in the Objective
Function domain corresponding to X;.



Genetic Algorithm

« Construction of a chromosome X;(x,y;z;

Xy Y1 z,
5 4.85 13
Parameter #1 Parameter #2 Parametar #3

NV S

101 | 0111100101 | 01101

!

X, 101011110010101101



Genetic Algorithm

1) Construct a population of genotypes (chromosomes) and evaluate the phenotypes
(objective function).

2) Associate a fitness value between 0 and 1 to each phenotype with a fithess function.
This function normalizes the phenotype (objective function) and assigns to its
genotype an estimate (between 0 and 1) of its ability to survive.

3) Reproduction. The ability of a genotype to reproduce is a probabilistic law biased by
the value given by the fitness function. Reproduction is done as it follows:

Given 2 candidate for reproduction, we have:
a) Cloning. The offspring is the same as the parents
b) Crossover. Chromosomes are split in two (head and tail) at a random point
between genes and rejoined swapping the tails. When crossover is performed
Mutation takes place. Each Gene is slightly changed to explore more possible
outcomes.

4) Convergence. The algorithm stops when all genes in all individuals are at 95%
percentile



<Genetic Algorithm>

BEGIN /*Genetic algorithm*/
Generate initial population:
Compute fitness of each individual

WHILE NOT finished DO
BEGIN /*Produce new generation®/

FOR population_size/2 DO

BEGIN /#Reproduction cycle®/
Select two individuals from old generation for mating;
[*Biased in favor of the fitter ones®/
Recombine the two individual to give offspring;
Compute fitness of the two offspring;
Insert offspring in new generation;

END

IF population has converged THEN
finished:=TRUE,

END

END



Genetic Algorithm. Example

9.5.2 Application

The genetic algorithm can be used to find the optimal values of the molding condi-
tion in the injection molding process of a plastic part. Let’s consider an upper cover
of a washing machine, as illustrated in Figure 9.19. We want to find the optimal
mold temperature, melt temperature, and filling time for a maximum performance

Figure 9.19
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Genetic Algorithm. Example

Figure 9.20

Range of molding
conditions

Minimum - - Maximum Values
Melt temperature 220 260 32
Mold temperature 50 70 32
Filling time 1 4 16

index that is related to the quality of the part to be fabricated. For simplicity, we as-
sume that the performance index is calculated by simulation of the molding condi-
tions. The lower and upper bounds of the optimization variables are given in Figure

9.20.

Now let’s consider how to encode these variables. As shown in Figure 9.20,
the melt temperature is assumed to have 32 discrete values and is thus represented
by 5 digits. Similarly the mold temperature and the filling time are represented by 5
and 4 digits, respectively. Thus the chromosome in this example will be a binary

string of length 14,




Genetic Algorithm. Example Results

Outcome:

Melt temperature Mold temperature  Filling time  Object function

Result 220.0 70.0 2.6 45.00




