Introduction to Design

Optimization

Examples and Constraint Penalty Functions



Various Design
Objectives

Minimum Weight
(under Allowable
Stress)

A PEM Fuel Cell Stack
with Even Compression
over Active Area

(Minimum Stress
Difference)
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A PEM Fuel Cell
Stack Multi-
Functional Panel with
|deal Stiffness — to
Accommodate
Thermal- and Hydro-
Expansions

(Minimum Difference
between ldeal
Stiffness and

Calculated Stiffness):

Find a panel design with
the ideal stiffness.
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Engineering Applications of Optimization

Design - determining design parameters that lead to the best
“performance” of a mechanical structure, device, or system.

“Core of engineering design, or the systematic approach to design
(Arora, 89)

Planning

— production planning - minimizing manufacturing costs

— management of financial resources - obtaining maximum profits
— task planning (robot, traffic flow) - achieving best performances

Control and Manufacturing - identifying the optimal control
parameters for the best performance (machining, trajectory, etc.)

Mathematical Modeling - curve and surface fitting of given data
with minimum error

Commonly used tool: OPT function in FEA; MATLAB Optimization Toolbox



What are common for an
optimization problem?

There are multiple solutions to the problem; and the
optimal solution is to be identified.

There exist one or more objectives to accomplish and a
measure of how well these objectives are accomplished
(measurable performance).

Constraints of different forms (hard, soft) are imposed.

There are several key influencing variables. The change
of their values will influence (either improve or worsen)
the “measurable performance” and the degree of
violation of the “constraints.”



Solution Methods

» Optimization can provide either
— a closed-form solution, or
— a numerical solution.

* Numerical optimization systematically and efficiently adjusts the
influencing variables to find the solution that has the best performance,
satisfying given constraints.

* Frequently, the design objective, or cost function cannot be expressed
In the form of simple algebra. Computer programs have to be used to
carryout the evaluation on the design objective or costs. For a given
design variable, a, the value of the objective function, f(a), can only be
obtained using a numerical routine. In these cases, optimization can
only be carried out numerically.

Computer Program
a (no simple algebra) f(a)

e.g. Minimize the maximum stress in a tents/tension structures using FEA.




Definition of Design
Optimization

An optimization problem is a problem in

which certain parameters (design variables)

needed to be determined to achieve the
best measurable performance (objective

function) under given constraints.



Classification of the Optimization Problems

Type of design variables

— optimization of continuous variables

— Integer programming (discrete variables)

— mixed variables

Relations among design variables

— nonlinear programming eg. f(X)=Ae™+Bx,

— linear programming e.g. f(X)=cX +C,X, +...4+C X,
Type of optimization problems

— unconstrained optimization

— constrained optimization
Capability of the search algorithm
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— search for a local minimum

— global optimization; multiple objectives; etc. *
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Automation and Integration

« Formulation of the optimization problems
— specifying design objective(s)
— specifying design constraints
— Identifying design variables
« Solution of the optimization problems
— selecting appropriate search algorithm
— determining start point, step size, stopping criteria
— Interpreting/verifying optimization results
* Integration with mechanical design and analysis

— black box analysis functions serve as objective and
constraint functions (e.g. FEA, CFD models)

— Incorporating optimization results into design



An Example Optimization
Problem

Design of a thin wall tray with minimal material:

The tray has a specific volume, V, and a given height, H.

The design problem is to select the length, |, and width,
w, of the tray.

Given wh=V h=H
A “workable design™: V
lw=—
H

Pick either | or w and solve for others




An “Optimal Design”

 The design is to minimize material volume, (or weight),
where “T” is an acceptable small value for wall thickness.

Minimize v _(w,I,h) = T( wl + 2Ih+ 2wh)

bottom  sides

lwh =V
subject to h=H
| >0

w=>0 |

- constraints (functions)

Design variables: w, I, and h.




Standard Mathematical Form

Wmm i T(wl +2lh + 2wh) - objective function
Subject to wh-V =0 - equality constraints
h—-H=0 . . .
/ - Inequality constrains
—1<0
W <0 - variable bounds
X =[l,w, h]T - design vector

- for use of any available optimization routines



Analytical (Closed Form) Solution

Eliminate the equality constrains, convert the original problem into a

single variable problem, then solve it.
V

from h=H & IwH=V:; solve forl: | = —
Hw
thus
] V V i vV _V
meT(mWJrzmH+2wH)_> mW|nT(ﬁ+2W+2wH)_f(w)

from  df (w)

=0, wehave w* = l, then the design optimum w™ = \/z
dw H H

- a stationary point
Discard the negative value, since the inequality constraint is violated.

The optimal value for I: \/,
zv

@ T(—+2h T(—+4JW)




Graphic
- al
Solution

no width & length limitations
no violated constraints.
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Change of Constraints and Their Influence to the Final Solution

Consider a modified problem:

1;ni£‘1 vV, = T (wxl+2xIxh+2xwxh)

Iwh=V

h=H , w W |
0 Handled as an unconstrained problem and found w
w2

120

s.t.

w<W maximum width / add a new constraint




Follow the previous example:

unconstrained optimum: W = “‘;/}
V t Vi h
® FOF WZ W.o = .
H
W |
w*=1I* = JZ
H W

W

&Fl 4

Vie
e For W<w® = [—

Constraint w< w is “active.”



Regenerator Convection Heat Transfer Coefficient
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Regenerator Convection Heat Transfer Coefficient

Using harmonic approximation techniques one can show that the temperature amplitude Ty, and
the time averaged temperature gradient dT'; /dzx are correlated through

)= Gy Iff) M

Where G is the fluid transfer function and carries operational, geometrical and material information.
The HTC is embedded in G;.

(C + iw) W
—w? + (B + C)iw Loest 2¢ (2)

Gr(w)= -

where B =(hy«/(e(pe)s) and C =(hg-/((1 — €)(pc)s). Using equation (1) we can use measured
tempn:&rahue amphtucles and gradients to correlate them through G ¢. The only degree of freedom is
the HTC h. We clenmte measured temperature amplitudes at frr:qurznmes _f,_ w1th Tﬂ (fi). The HTC
can be found by minimizir espectto h

dTx ) 3)

min O(h) = min Z (Tﬂ{f,_} - Gylfuh)

h



Regenerator Convection Heat Transfer Coefficient

If we assume the heat transfer coefficient to be constant (independent of frequency) we get a model
output as shown below
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Figure 2: Temperature amplitude residual O(h) as

function of h
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Figure 3: Model response using h=5000 W/m2/K
compared to experimental data

In figure (2) a clear minima is observable around h = 5000 W/m*/K. The model response using
h = 5000 W/m*/K compared to the experimental values is shown in figure (3). The model response
using constant HTC is poor, large deviations from experiment and model are observable.




Regenerator Convection Heat Transfer Coefficient

In this section we make an attempt to improve the model quality by choosing a specific non constant
torm of the heat transtfer coetficient, that is,

h(fl=b+a-f (4)

The minima of the residual O(h) must now be discussed in terms of a and b. Figure (4) shows a clear
minima for b = 0 and a = 3730. Although this model will show a much smaller error we must argue
that b = 0 is rather not physical since heat transfer can still occur, even when Re = 0. The model
response is shown in figure (5). The mean temperature amplitudes and model coincide perfectly.



Regenerator Convection Heat Transfer Coefficient
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Regenerator Convection Heat Transfer Coefficient
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Procedures for Solving an Eng. Optimization

Problem

Formulation of the Optimization Problem

Simplifying the physical problem
identifying the major factor(s) that determine the performance or outcome
of the physical system, such as costs, weight, power output, etc. — objective

Finding the primary parameters that determine the above major factors
- the design variables

Modeling the relations between design variables and the identified major
factor - objective function

|dentifying any constraints imposed on the design variables and modeling
their relationship — constraint functions

Selecting the most suitable optimization technique or algorithm to
solve the formulated optimization problem.

- requiring an in-depth know-how of various optimization techniques.
Determining search control parameters
- determining the initial points, step size, and stopping criteria of the

numerical optimization

Analyzing, interpreting, and validating the calculated results
An optimization program does not guarantee a correct answer, one needs to

prove the result mathematically.

verify the result using check points.




Standard Form for Using Software Tools for
Optimization (e.g. MatLab Optimization Tool Box)

Denoting the optimization variables X, as a n-dimensional vector, where the n
variables are its componets, and the objective function F(X) we search for :

X" e R"so that F(X™) = min F(X)
subject to

X, < X* < X Regional constraints
L

G(X"H20 i=1,2,..,m

and Behavior constraints

H(X"=0 j=1,2,...q

Where m are the number of inequality constraints and g the number of
equality constraints

Use of MATLAB
Optimization Toolbox



Notes

« A maximization problem can be converted into a minimization
problem by:

max  f(x)=> min—— OF min{_— f(}’)}_ "
S,
»3x min

- £ 4 can be converted into ¢,3:
x,—x <0

Jc‘,“J -x,<0

adding 2N inequality constraints

Assignment: (notebook only, not to turn in)

o Consider a circular tray, find the minimum v, with »=#, and
also with » free. The diameter of the tray, d, is a design
variable.

e Compare the above two “competing” design in terms of v,.



Geometric Interpretation of the Objective
Function

« The Objective function can be interpreted to be a
surface of dimension n embedded in a space of
dimension n+1. This is easy to visualize for a 2
parameter problem.

« The optimization process can be compared to
“mountain climbing in a dense fog, having as only tool
an altimeter”.

Use of MATLAB
Optimization Toolbox



Treatment of Constraints

« Equality constraints effectively reduce the dimensions of the
design space by 1.

e |nequality constraints can be mathematically enforced by the
Introduction of penalty functions, so that a large value is added
to the function when the constraints are violated. We can define

the penalty function P(X):

0 forXERji
P(X)=
+o0 fDrXER;ﬁ

where R” is the subset of R" corresponding to the feasible design

And the minimization process can be extended to the augmented function D(X):

D(X) = F(X) + P(X)



Exterior Penalty Functions

e Exterior penalty function is Xe R; for

Defining penalty function as: §(X) = Z&i[Gj(X)]a + lei(X)lﬁ
i J

where
0 ifG,(X)20
TN i G,X) <0
SX)=0 ifXe R
and

Sx)>0 ifXe R}

and o and B are constants, usually having values of 1 or 2, and the functions G; and
H ;are those in Equations (9.3) and (9.4). Note that



Exterior Penalty Functions

For any positive number p, we can define the augmented objective function as

D(X, p) = F(X) + é— S(X)

and observe that D(X, p) = F(X) if and only if X is in the feasible region; otherwise
DX, p) > F(X). The S(X)/p term approximates the discontinuous penalty function
P(X) in Equation as p — 0. Thus the exterior penalty function method consists
of solving a sequence of unconstrained optimizations for k=0, 1, 2, . . ., given by

min D(X, p,) = minI:F(X) + 51_ (Z 516X + Z[H ‘_,.(rﬁz;)|"3 ]
kA i i

using a strictly decreasing sequence of positive numbers p,. The optimal values X,
for p, will converge to the real optimal values X" as k increases and p, approaches
0.



Exterior Penalty Functions - Example

Find the minimum of
F(x)=x* (xe R)

subject to the constraint x — 1 > 0. The optimal solution clearly is x* = 1, so we need
to show that the solution obtained by the exterior penalty method converges to this

solution.

ANSWER

Let’s form the augmented objective function,
Then we have the unconstrained optimization problem

min D(x, p,) = mm[x2 ¥ _é_ 5(x - 1)2]

Here & has the value of 1 for x < 1 and 0 otherwise.



Exterior Penalty Functions
Example

i
0 1 1 o
Pr+1

For any positive p,, the function D 1s convex downward, as shown in Figure
and its minimum is at the point
1

o +1

X

Note that, for every positive p,, this point is infeasible for the original problem be-
cause it is smaller than 1. As p, approaches 0, points x, approach x = 1 from outside
the feasible region.



Exterior Penalty Functions Example

F:Kﬁz;
Fl=%"24+(1/.7) % (x-1)"2;
F2=%"24+ (1/.1) % (x-1)"2;

Plot[{F, F1, F2}, {x, 0, 3}]
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Interior Penalty Functions
* Interior penalty function is applied f ifX e R}

Consider therefore the optimization problem
min F(X)
subject to
GX)z20 i=12,...,m

A good choice for the barrier function that will provide the walls at the boundaries
of the feasible region would be

1
B(X) = WG,-(X}

The augmented function D(X, 0):

D(X, p) = F(X) + pB(X)



Interior Penalty Functions

Given the augmented function D(X, p) = F(X) + pB(X)

where p is a positive number. Similarly, the interior penalty method consists of
solving a sequence of unconstrained optimizations for k=0, 1, 2, . . ., given by

min D(X, p,) = mm[F(X) + P, 2 —]

G (X)

using a
for p, will converge to the real optimal values X as k is increased and p, dp-
proaches O.



Interior Penalty Functions - Example

Find the minimum of
1
F(x)= EI (x e R)

subject to the constraint x — 1 = 0. The optimal solution clearly is x* = 1, so we need
to show that the solution obtained by the interior penalty method converges to this
solution.

ANSWER
Let’s form the augmented objective function

min D(x, p,) = min[lx%— o} __}_]
2 x-1



Interior Penalty Functions - Example

. _ \ I\ 72
Hence the unconstrained minimum of D is? D(x,p)
s
Ik — 1 + 2pl PJ;.:D.S
. . . P;_.:U.Z
and the minimum value of D is iy F(x)
_]:-— .
1 p Z
he
F(x,)= E + —2-:- g—-— Feasible region
—»

Note that, for every positive p,, the optimal point is in the feasible region for the
original problem because it is greater than 1. As p, approaches 0, the points x, ap-
proach x = 1. The original and the augmented objective functions for a few values
of p, are illustrated in Figure When the procedure described is carried out by
use of a numerical algorithm, the initial value for the search has to be chosen in the

feasible region.



