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Systematic parameter estimation for PEM fuel cell models
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Abstract

The problem of parameter estimation is considered for the case of mathematical models for polymer electrolyte membrane fuel cells
(PEMFCs). An algorithm for nonlinear least squares constrained by partial differential equations is defined and applied to estimate effective
membrane conductivity, exchange current densities and oxygen diffusion coefficients in a one-dimensional PEMFC model for transport in
the principal direction of current flow. Experimental polarization curves are fitted for conventional and low current density PEMFCs. Use of
adaptive mesh refinement is demonstrated to increase the computational efficiency.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

Mathematical models are now widely used to simulate the
ehavior of fuel cell devices. Such models are desirable be-
ause they can provide general trends as well as quantitative
easures of relative changes in performance for the device
s model parameters are varied. The models can also provide
etailed, localized data that are frequently unavailable from
xperimental measurements within an operating cell.

However, the detailed data and parametric studies pro-
uced by computer simulations should not be accepted with-
ut appropriate validation with experimental data. This vali-
ation may include reduction of modeling error by comparing
chosen mathematical model to other potential models or re-
uction of parameter error by adjusting the parameters of the
hosen model. In each case, the goal is to minimize the dis-
repancy between the computed simulation and the observ-
ble experimental data. Estimation of the model parameters

s the focus of this study.
The problem of parameter estimation can be summarized

n general terms as follows. Suppose that we have developed a
athematical model which takes the form of a system of par-

∗

tial differential equations (PDEs) for the solution variab
as well as a set of model parameters, both discrete (fini
spatially distributed (infinite). Suppose also that certain
perimental data are available, which we assume corres
to evaluations of various observable outputs of the solu
variables. The problem is then to find an optimal set of
rameter values that minimizes the error between the obs
output functionals of the experimental data and those ou
calculated using the solution to the mathematical mode

In the case of fuel cells, while there have been som
cent works which report local current density data using
mented current collectors[1], typically the experimental da
are available only for global output quantities such as p
ization curves, overall water balances, etc. Furthermore,
data are actually a set of measurements over a range of
ating conditions as a parameter, such as the average c
density, cell potential, relative humidity, etc. is varied. Th
fore, the comparison between model and experiment can
be made globally using data that represent an average p
mance of the fuel cell. This point is particularly signific
in the case of fuel cell stacks, where the local current, m
fluxes, temperature, etc. may vary significantly from the
erage measured data.

For the case of polymer electrolyte membrane fuel c
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(PEMFCs), the mathematical model is chosen to represent
various reaction and transport processes within a cell, such as

d.
378-7753/$ – see front matter © 2005 Elsevier B.V. All rights reserve
oi:10.1016/j.jpowsour.2004.12.024



84 B. Carnes, N. Djilali / Journal of Power Sources 144 (2005) 83–93

convection–diffusion transport, electrochemical reaction and
membrane water and proton transport. The solution variables
can include fluid velocity and pressure, species composition,
temperature, scalar potentials, etc. while the parameters may
include the membrane conductivity, reference exchange cur-
rent densities, electro-osmotic drag coefficient, etc. An ad-
ditional motivation for parameter estimation is the lack of
understanding of fundamental transport processes such as mi-
gration of protons and liquid water through the membrane,
which can lead to semi-empirical models with unknown,
sometimes nonphysical parameters, which must somehow be
estimated.

Many mathematical models for PEMFCs have been de-
scribed in the literature, ranging from one-dimensional mod-
els in the direction of current or gas flow[1–5] to two- and
three-dimensional models[6–10]. However, most of these
authors do not address the question of parameter estimation
using a systematic approach. Thampan et al.[11] and Fim-
rite [12] performed parameter estimation for membrane con-
ductivity submodels using curve fitting techniques. Suares
and Hoo[13] estimated PEMFC model parameters for the
model of Nguyen and White[4], such as exchange cur-
rent density using an optimization approach. Berg et al.
[1] estimate several parameters using a one-dimensional
PEMFC model based on[4]. Recently, Guo et al.[14]
have fitted cathode catalyst layer parameters such as porosi-
t co-
e layer
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ena in the mathematical model. In addition, we study the
effects of mesh refinement on the accuracy of the parameter
estimation, including the use of locally refined meshes for
greater efficiency and reliability.

The remainder of this work is organized as follows. We
first describe our one-dimensional transport model for a
PEMFC. Then we provide an algorithm for parameter estima-
tion with PDE constraints based on a nonlinear least squares
approach. Next, we present numerical results for estimating
parameters using conventional PEMFC dimensions and data
for regions with no mass transport limitations, as well as for
an air-breathing PEMFC that is mass transport limited. We
conclude with an example illustrating the effectiveness of
using adaptive mesh refinement.

2. One-dimensional PEMFC model equations

In this section, we define a simple one-dimensional model
for reaction and transport within a PEMFC. Since the prin-
cipal axis of transport of current is in the direction normal
to the membrane, we choose thex-axis in this direction, ori-
ented from anode to cathode. A schematic of the PEMFC
layers and dependent variables is shown inFig. 1.

Conduction of electrons through the catalyst layers and gas
diffusion layers (GDLs) is modeled using a solid electrical
p ane
a
I l the
t
C law
a lem:
fi

−

−

−

c

ies, reference current densities and effective diffusion
fficients using a one-dimensional cathode catalyst
odel.
In this work, we demonstrate the use of parameter es

ion for a one-dimensional model for a PEMFC that acco
or conduction of protons and electrons, diffusion of oxy
nd the electrochemical reactions. We present results on
ation of the effective membrane conductivity, effective
metric exchange current densities in the cathode and a
atalyst layers, and effective oxygen diffusion coefficien
he gas diffusion and catalyst layers, paying special atte
o the sensitivity coefficients, which indicate the significa
f a parameter at each data point on the experimenta

arization curve. The algorithm for parameter estimatio
ased on least squares minimization with constraints ar

rom the solution of a system of nonlinear PDEs, and is
ciently general that it can be extended to multidimensio
ransient models, or to include additional physical phen

Fig. 1. Schematic of o
 ensional PEMFC model.

otentialφe and conduction of the protons in the membr
nd catalyst layers is modeled using an ionic potentialφm.

n the cathode side GDL and catalyst layer, we mode
ransport of oxygen using the oxygen mole fractionXO2.
onservation of charge and mass, combined with Ohm’s
nd Fick’s law, yields the nonlinear boundary value prob
nd {φe, φm, XO2} such that

d

dx

(
σe

d

dx
φe

)
= j, GDLs and catalyst layers, (1a)

d

dx

(
σm

d

dx
φm

)
= −j, membrane and catalyst layers,

(1b)

d

dx

(
cD

d

dx
XO2

)
= − j

4F
,

athode GDL and catalyst layer, (1c)
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η ≡ φe − φm, overpotential in catalyst layers. (1d)

Hereσe is the electrical conductivity,σm the ionic conductiv-
ity, c the molar concentration andD is the molecular diffu-
sivity. The nonlinear reaction kinetics are given by a Butler–
Volmer expression

j ≡ js{exp (βnfη) − exp ((β − 1)nfη)}, (2)

wherejs is the exchange current density withs = a, c for
anode and cathode, respectively,β the transfer coefficient,n
the number of electrons transferred andf ≡ F/RT is a factor
depending on the Faraday constantF, ideal gas constantR
and temperatureT [15]. A common assumption[10] is that
β = 1/2, in which case we can defineα ≡ β n = −(β − 1)n
and then

j ≡ js{exp (αfη) − exp (−αfη)} = js2 sin h(αfη). (3)

In general, the transport of hydrogen in the anode GDL and
consumption in the anode catalyst layer should be included in
the model. However, in the context of fitting parameters using
polarization curve data, the hydrogen mass transport limita-
tions and resulting overpotential losses are likely to be dom-
inated by ohmic, cathodic overpotential and oxygen limiting
losses[6]. It is therefore reasonable to assume that hydrogen
concentration is nearly constant, while oxygen concentration
i tion
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We now define a subset of parameters on which to apply
the parameter estimation procedure of Section3. These are
the membrane ionic conductivityσmem, the cathode reference
exchange current densityjref

c , the anode reference exchange
current densityjref

a , and the oxygen diffusion coefficients
Dgdl andDcat in the cathode side GDL and catalyst layer,
respectively. We will assume that all other parameters and
dimensions are known, and will seek to estimate only these
five parameters.

3. Algorithm for nonlinear least squares with PDE
constraints

In this section, we briefly outline the nonlinear least
squares (NLS) approach, introduce the concept of implicit
least squares through PDE constraints, and give an algorithm
for NLS with PDE constraints.

The Lagrangian approach to constrained optimization is
well known (cf.[16,17]). As part of this work, an algorithm
was developed by the authors based on extending the La-
grangian approach. This allows for elimination of the La-
grange multipliers, avoiding solution of a large coupled sys-
tem for the parameters, solutions, and Lagrange multipliers.
In exchange, we must solve additional linear equations for
the sensitivity functions, but can sequentially solve a number
o eter
u

t
F
c in
S
t

I

A res
f

M

m

u s.
T data
fi

o

w . In
o on.
T n
s expected to vary more widely. We make the assump
hat the exchange current density is constant in the anod
rst-order in the cathode

a = jref
a , jc = jref

c

(
cO2

cref
O2

)
= jref

c

(
c

cref
O2

)
XO2. (4)

The boundary conditions are specified as follows:

anode GDL boundary with the anode gas channel:φe = 0;
GDL/catalyst layer: zero ionic current or−σm

d
dxφm = 0;

catalyst layer/membrane: zero electrical current
−σe

d
dxφe = 0;

membrane/cathode catalyst layer: zero oxygen flu
−cD d

dxXO2 = 0;
cathode GDL boundary with cathode gas channel: tota
tential dropφe = −dV and reference oxygen mole fracti
XO2 = Xambient

O2
.

or conventional PEMFCs with flow fields,Xambient
O2

will vary
long the flow channels, and can be interpreted as an av
alue, while for ambient air-breathing PEMFCs, we can
ne Xambient

O2
using the ambient oxygen composition. In

tting procedure later, we only consider the oxygen equa
or ambient air-breathing PEMFCs.

We specify a given potential drop dV , solve the mode
quations, and then calculate the current density by
uting the electrical currentI = −σe

d
dxφe evaluated at th

athode GDL boundary. The cell voltage is then compute
eV = Voc − dV , whereVoc is the experimentally measur
pen circuit potential.
f decoupled systems in order to compute each param
pdate.

Suppose that we haveM data pairs{(Ii, Vi)}Mi=1 and a fit-
ing function I = I(λ; V ) with N parametersλ = {λj}Nj=1.
or example, these may be taken as the current densityI and
ell voltageV from polarization curve data, as will be done
ection4. We would like to choose the parametersλ in order

o approximate the data at each data pair as:

(λ; Vi) ≈ Ii. (5)

common way to do this is to minimize a least squa
unctional

(λ) ≡ 1

2
||m||2 = 1

2

M∑
i=1

|mi(λ)|2,

i(λ) ≡ ωi(I(λ; Vi) − Ii), (6)

sing a NLS algorithm, where themi’s are called the misfit
he constantsωi can be chosen to produce a weighted
t. For simplicity we takeωi = 1 throughout.

At a local minimum we must have∇M = (∇m)T m = 0,
r

M∑
i=1

mi

∂mi

∂λj

= 0, (7)

hich defines the set of solutions of the NLS problem
rder to solve(7), we can apply Newton–Raphson iterati
he system that we solve for the updateδλ at each iteratio
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takes the formJ δλ = r, where

rj ≡ −
M∑
i=1

mi

∂mi

∂λj

,

Jjk ≡ − ∂rj

∂λk

=
M∑
i=1

{
∂mi

∂λj

∂mi

∂λk

+ mi

∂2mi

∂λj∂λk

}
. (8)

If we assume eachmi is small, we can drop the second term
and solve using the Gauss–Newton method, which takes the
form M δλ = r, where

Mjk ≡
M∑
i=1

∂mi

∂λj

∂mi

∂λk

. (9)

One advantage to this approach is that we only need to calcu-
late the first-order partial derivatives∂mi

∂λj
and no second-order

derivatives.
The partial derivatives∂mi

∂λj
are often called the sensitiv-

ity coefficients, because they measure the sensitivity of the
ith misfit to perturbations in thejth parameter. They are also
important to the question of solvability of the NLS problem,
which is also called the problem ofidentifiability (see for in-
stance[16]). Invertibility of the matrixM is equivalent to the
vectorsαj ≡ ( ∂m1

∂λj
, . . . , ∂mM

∂λj
) ∈ R

M being linearly indepen-
d the
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subject to the constraints

Ri(ui, λ) = 0. (12)

The main difference is that the misfit functional is now a
function of the solution variableu rather than the parameter
λ. The dependence ofu on λ is implicit in the constraints.
We will assume for simplicity thatI is linear, so thatI ′(u)v =
I(v).

A standard approach to solving the constrained parameter
estimation problem is to introduce Lagrange multipliers, one
for each solutionui, and solve a large coupled system[17]. It
turns out that we can eliminate the Lagrange multipliers and
solve the constrained parameter estimation problem using a
slightly modified form of the Gauss–Newton iteration in(9),
provided that we can calculate the partial derivatives∂mi

∂λj
and

the componentsmi. Using the chain rule, we can calculate

∂mi

∂λj

= ∂mi

∂ui

∂ui

∂λj

= I ′(ui)
∂ui

∂λj

= I

(
∂ui

∂λj

)
. (13)

Thus, if we could calculate the partial derivatives∂ui

∂λj
, we

could evaluate∂mi

∂λj
. To see how to obtain these functions, we

differentiate each PDE w.r.t.λj to obtain:

∂Ri ∂ui ∂Ri

T

w
with

P
over

t go-
r
t only
f dif-
f h
i ctor-
i n be
a tors
a on
f lgo-
r he
a p (2)
i tion
o
t

ode
w l vec-
t
c hem
ent. If the vectors are nearly linearly dependent, then
LS problem can be difficult to solve and may even fa
onverge. Thus, before proceeding with any NLS prob
t is prudent to identify any linear dependence in the vec
j.

The NLS approach described above is adequate whe
ave an explicit expression of the formI = I(λ; V ). However
ften we are interested in solving stationary or transient P
ith specified input valueV and postprocessing the solut

o obtain the output valueI, or vice versa. The paramete
are then the parameters of the PDE, and the “func
= I(λ; V ) is computed by solving the PDE.
In this case, we must modify the NLS approach to

lude the PDE constraints and to handle the implicitly
ned output function. If we denote the differential opera
hat models the the PEMFC byR = R(u, λ; V ), then solu
ionsu = u(λ; V ) are defined by solving:

(u, λ; V ) = 0, (10)

or given values ofλ andV. The outputI, is calculated as
unctional of the solution, in the formI = I(u). We denote
he residuals for each valueVi byRi(u, λ) ≡ R(u, λ; Vi) with
orresponding solutionsui = ui(λ).

The constrained parameter estimation problem can
e expressed as follows: findu and λ that minimizes th

unctional

(u) ≡ 1

2
||m||2 = 1

2

M∑
i=1

|mi(ui)|2,

i(ui) ≡ I(ui) − Ii, (11)
∂ui ∂λj

+
∂λj

= 0. (14)

hus, by solving the auxiliary equations:

∂Ri

∂ui

wij = −∂Ri

∂λj

, (15)

e obtainwij = ∂ui

∂λj
and thus∂mi

∂λj
= I(wij).

We now define an algorithm for parameter estimation
DE constraints shown in the box below.
Because the system in step (2) involves summation

he data indexi, we can perform each iteration of the al
ithm, which consists of steps (1–3), by looping overi and
hen j. Practically speaking, this means that we need
orm and store the Jacobian matrix associated with the
erential operator∂R

i

∂ui
once for each indexi in step (1) of eac

teration. The linear systems can be solved by an LU fa
zation of the Jacobian matrix or else an iterative solver ca
pplied. The finite dimensional approximate solution vec
ssociated withδui andwij are stored for the entire iterati

or use in step (3). Thus, the cost of each iteration of the a
ithm is the same as solvingN(M + 1) Jacobian systems. T
dditional solution of the Gauss–Newton system in ste

s then negligible. The result is the simultaneous calcula
f the optimal parametersλj, the corresponding solutionsui,

he misfit valuesmi, and the sensitivity coefficients∂mi

∂λj
.

This algorithm can be implemented in any computer c
hich allows access to the Jacobian matrix and residua

or and the linear algebra solver. If the partial derivatives∂Ri

∂λj

annot be calculated explicitly, we may approximate t
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Algorithm for NLS with PDE constraints
Initialize ui for initial λ by solvingRi(ui, λ) = 0.
Compute updatesδui andδλj as follows:
for n = 1,2, . . . do

(1) Computemi = I(ui) − Ii. Solve for initial δui and
functionswij

∂Ri

∂ui

δui = −Ri (Newton–Raphson iteration). (16a)

∂Ri

∂ui

wij = −∂Ri

∂λj

. (16b)

(2) SolveM δλ = r using modified Gauss–Newton iter-
ation

rj ≡ −
M∑
i=1

{mi + I(δui)}I(wij), (17a)

Mjk ≡
M∑
i=1

I(wij)I(wik). (17b)

(3) Updateδui using correction forλ

δui+ =
N∑

j=1

wijδλj. (18)

Updateui+ = δui andλj+ = δλj, possibly with step
size control.

end for

using the finite difference approximation:

∂Ri

∂λj

≈ 1

ε
[Ri(ui, λ + εej) − Ri(ui, λ)], (19)

whereej is thejth coordinate vector andε � 1. If the code
does not permit access to the Jacobian matrix, then we may
directly approximate the partial derivatives∂mi

∂λj
using:

∂mi

∂λj

≈ 1

ε

[
mi(ui(λ + εej)) − mi(ui(λ))

]
, (20)

whereui(λ) is the solution calculated at the parameter value
λ.

We now apply the parameter estimation algorithm to our
PEMFC model equations.

4. Application to the PEMFC model equations

The solution to the differential equations is approximated
at each step of the parameter estimation algorithm by a stan-
dard Galerkin finite element method using piecewise lin-
ear basis functions. We begin with an initial coarse grid

and apply the iterative algorithm, which usually converges
in about four to eight iterations, to solve for approximate
solutionsuih and parametersλjh. Then we refine the grid
and project the current approximate solutions onto the fine
grid. Using the projected solutions as the initial guess we
apply the iterative algorithm to obtain new approximate so-
lutions and parameters. After sufficient levels of mesh refine-
ment, the parameters tend to converge to a mesh-independent
value, which we take as the final estimated parameter
value.

The mesh refinement can be uniform, meaning that all cells
are refined, or adaptive, meaning that we selectively refine
cells based on a local error indicator function. Our computer
code reports the values of the parameters calculated at each
iteration for each mesh, which reveals the convergence of the
parameter estimation algorithm on each individual mesh, as
well as the convergence of the finite element approximation
to the parameters.

We consider data from two different PEMFCs, which
are shown inFig. 2. The first data set is for a conven-
tional PEMFC design using polarization data reported by
Ticianelli et al. [18], while the second is an air-breathing
PEMFC yielding lower current densities. We also plot our
best fitted polarization curves, corresponding to the simulta-
neous fitting ofσmem and jc for the conventional PEMFC
and to σ , D , and D for the low current density
P

se to
fi for-
m rep-
r e, the
l . We
c strate
t al of
v mbi-
n pling
b fit by
m to be
r

4

on-
v

4
ini-

t
w re
f

V

w
1 -
d

mem cat gdl
EMFC.
In the parameter estimation procedure, we can choo

t parameters individually, or simultaneously. While the
er approach is numerically more reliable, it may not

esent the coupling between the parameters. Therefor
atter approach is preferred based on physical grounds
hoose to perform both approaches, in order to demon
he variation in the fit of the parameters. When a great de
ariation of a fitted parameter is seen using different co
ations, this can be an indication that there is strong cou
etween the parameters. In this case the data can be
ultiple sets of parameters, and the model may be need

evised.

.1. Conventional PEMFC

We first fit our one-dimensional PEMFC model to the c
entional PEMFC polarization curve.

.1.1. Initial parameters
We take the physical dimensions of each layer and

ial transport and reaction properties from Berning et al.[6],
hich we summarize inTable 1. The experimental data a

rom Ticianelli et al.[18] and takes the form of a curve fit

= V0 − b log

(
I

I0

)
− RI, (21)

ith parameter valuesV0 = 0.935 V, b = 0.065 V, I0 =
mA cm−2, and R = 0.39 cm2 S−1. The electrode is pro
uced with a catalyst loading of 0.35 mg Pt cm−2 with 4%
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Fig. 2. Experimental and fitted polarization curves for conventional and low
current PEMFC designs.

Nafion, the membrane is Nafion 117, andVoc = 0.935. The
PEMFC is operating on humidified hydrogen/air at pressures
of 3/5 atm at 80◦C. Because the data are fitted to lower current
density data, mass transport limitations are not significant.
Therefore, we do not include the oxygen transport equation,
assuming that the oxygen concentration is at the reference
value. We seek to fit the parametersσmem, jc, andja (drop-
ping the superscript onjref

s ).
For fully humidified Nafion 117, we expectσmem ≈

8 S m−1 from experimental measurements of the protonic
conductivity of Nafion. We choose the initial value of
σmem = 6 S m−1 following [6]. The exchange current den-
sities are typically available as surface reaction rates; for
example, in[6] they use values ofja = 6.0e+3 A m−2 and
jc = 4.4e−3 A m−2. In order to derive effective volumetric
exchange current densities, we must multiply by a correc-
tion factor that has units of 1 m−1. Ideally this factor should
account for the surface:volume ratio, the porosity of the cat-
alyst layer, as well as the amount of Nafion and Pt applied
when the catalyst layer was formed. We take our initial guess
for the effective volumetric exchange current densities as
ja = 1e+9 A m−3 andjc = 2e+6 A m−3.

Table 1
Initial physical transport and reaction parameters for conventional PEMFC

We present inFig. 3 the dimensionless sensitivity coef-
ficients ∂mi

∂λj
for all three parameters, calculated at the initial

values. Because of the near linear dependence of the sen-
sitivity coefficients forσmem and ja, we expect that these
parameters may be coupled.

Another interesting observation to make aboutFig. 3
is the variation in sensitivity as the average current den-
sity I is varied. While the sensitivity coefficients forσm
and ja remain fairly constant, the sensitivity coefficients
for jc are largest for smallI, and decrease exponentially
as I increases. This can be explained by the difference in
the type of voltage losses. For the membrane, the ohmic
loss is a linear function of the current with constant sen-
sitivity to the conductivity, while for the cathode electro-
chemical reaction, the loss is a logarithmic function of the
current with decreasing sensitivity to the reaction rate as
I increases. By linearizing the anode reaction rate, it can
be shown that the anode loss is also a linear function of
the current, and thus, behaves as the membrane conductiv-
ity.

In many studies, the catalyst layers are modeled as thin
interfaces or using a constant overpotential. InFig. 4 we
plot the overpotentialη in the anode and cathode cata-
lyst layers for the initial parameter values and varying cur-
rent densities in order to illustrate the effect of solving a

od-
val-
ter-
lue.

r ki-
We

r es-
by

al
Anode Membrane Cathode

Gas diff.
layer

Cat.
layer

Cat.
layer

Gas diff.
layer

Thickness,l (�m) 260 28 230 28 260
σe (S m−1) 6000 6000 0 6000 6000
σm (S m−1) 0 0.6 6 0.6 0
js (A m−3) 1e+9 2e+6
α 0.5 1.0
one-dimensional model for behavior that cannot be m
eled using a reduced model. The maximal absolute
ues ofη occurs along the membrane–catalyst layer in
faces, where the rate function has its largest absolute va
The larger rate constant at the anode results in faste
netics and a smaller reaction region near the interface.
do not plot the solutions elsewhere, sinceφm varies lin-
early within the membrane, andφe is nearly constant in the
GDLs.

4.1.2. Estimated parameters
We now estimate the parameters using our paramete

timation algorithm. We first compare the results obtained

Fig. 3. Initial dimensionless sensitivity coefficients for convention
PEMFC.
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Fig. 4. Initial overpotential in anode (left) and cathode (right).I is given in units of mA cm−2.

Table 2
Estimated parameters on fine grids for conventional PEMFC using different
combinations of fitted parameters

σmem (S m−1) jc (A m−3) ja (A m−3)

Initial 6 2e+6 1e+9

Fitted 7.67 – –
– 9.79e+5 –
(7.67) – 1.43e+9
8.29 2.50e+6 –
9.24 – 9.60e+8
(7.67) 2.66e+6 9.02e+8

Values in parenthesis were fixed but chosen different from the initial guesses.

estimating each parameter separately, and then using combi-
nations of parameters. The converged values are reported in
Table 2.

Convergence of the estimated values forσmem using uni-
form mesh refinement is shown inFig. 5. We can see con-
vergence of the parameter estimation algorithm on each grid
to a valueλjh, as well as convergence of the valuesλjh as
the mesh is refined. When we fitσmem or bothσmem, jc, the
value is close to the fully humidified conductivity of 8 S m−1

for Nafion 117. However, fitting with bothσmem, ja yields a
higher value ofσmem by fitting a lower value ofja.

We saw inFig. 3that the sensitivity of the current densityI
tojc decreases dramatically asI increases. When a sensitivity

Table 3
Initial physical transport and reaction parameters for a low current PEMFC

Anode Membrane Cathode

Gas diff.
layer

Cat.
layer

Cat.
layer

Gas diff.
layer

Thickness,l (�m) 130 20 60 20 130
σe (S m−1) 100 100 0 100 100
σm (S m−1) 0 0.2 2 0.2 0
DO2 (m2 s−1) 0 0 0 3e−7 3e−6
js (A m−3) 1e+9 2e+6
α 0.5 1.5

coefficient is small, the term in(7) multiplied by the coeffi-
cient will also be small, and thus can be neglected. Therefore
we choose to estimatejc using current density only in the
range ofI < 300 mA cm−2, where the sensitivity is largest.
Inclusion ofjc is thus key to fitting low values ofI, whereas
inclusion ofσmem is required for the entire range ofI. This
is consistent with the dominance of activation losses at low
current densities and of ohmic losses at higher current den-
sities, and explains why the best fittings are obtained using
the combinations{σmem, jc} and{jc, ja} (with the fittedσmem
value).

4.2. Low current density PEMFC

We now fit our one-dimensional PEMFC model to the low
current density PEMFC polarization curve.
Fig. 5. Convergence ofσmem for various parameter combinations.
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Fig. 6. Initial dimensionless sensitivity coefficients for a low current
PEMFC.

4.2.1. Initial parameters
We adjust the dimensions and parameters for an air-

breathing PEMFC which exhibits mass transport limitations
at relatively low current densities as shown inFig. 2. This
cell uses a thinner membrane (Nafion 112) and thinner lay-
ers, which we summarize inTable 3. The temperature is now
specified as 60◦C, Voc = 0.912, and the ambient oxygen
mole fraction is specified as 0.21. Because of the reduced
slope of the polarization curve, we begin with a lower value
for the membrane conductivity. The oxygen diffusion coef-
ficient in the GDL is reduced by an order of magnitude to
account for the porosity and tortuosity of the diffusion layer;
in the catalyst layer this parameter is reduced by another or-
der of magnitude to model additional resistance at reaction
sites (seeFig. 6for initial sensitivites).

4.2.2. Estimated parameters
We now apply the parameter estimation to the data for

the low current PEMFC design. The converged estimated
parameters are shown inTable 4.

The fitting of the parametersσmem, ja, and jc is per-
formed using only data withI < 200 mA cm−2 and is sim-
ilar to the case of the conventional fuel cell (see first
section of fitted parameters inTable 4). However, the
fitted membrane conductivity is now closer to 1 S m−1,
which corresponds to partially humidified operating con-
ditions. In addition, the fitted cathode ratejc is an or-
der of magnitude lower than the initial value, which is
caused by using the effective value of 2e−1 S m−1 for
the effective membrane conductivity in the catalyst lay-
ers.

We next fit the effective oxygen diffusion coefficientsDgdl
andDcat (second section of fitted parameters inTable 4) for
the large current data (I > 200 mA cm−2) using the fitted
σmem, ja, andjc values. The data can be fitted by reducing
eitherDgdl or Dcat by an order of magnitude, representing
an additional mass transport resistance, such as liquid wa-
ter flooding. We can also fit the diffusion coefficients, indi-
vidually or simultaneously, along withσmem, over the en-
tire polarization curve, using the fitted values forja andjc
(third section of fitted parameters inTable 4). We plot inFig.
7 the oxygen profiles in the cathode catalyst layer for dif-
ferent current densities and parameter fittings. FittingDgdl
results in a nearly constant, low oxygen concentration in
the catalyst layer, while fittingDcat results in a steep gra-
dient in oxygen concentration in the catalyst layer. Simulta-
n s the
m talyst
l

data
fi The
p , but
i the
d qua-
t mass
t
a to
o aller
t oge-
n ate to

Table 4
Estimated parameters for fine grids for low current PEMFC using different co

σmem (S m−1) jc (A m−3)

Initial 2 2e+6

F

F

F

V uesses
itted 0.715 –
– 3.71e+5
1.02 3.41e+5
– –
(1.02) (3.41e+5)

itted (1.02) (3.41e+5)
(1.02) (3.41e+5)

itted 1.10 (3.41e+5)
1.16 (3.41e+5)
1.15 (3.41e+5)

alues in parenthesis were fixed but chosen different from the initial g
eous fitting lies somewhere in between, and distribute
ass transfer resistance between the GDL and the ca

ayer.
While simultaneous fitting provides the best possible

t over the entire curve, all three fits are similarly good.
roblem lies not in the parameter estimation procedure

n the choice of the mathematical model. In order to fit
rop in current density of the data using the oxygen e

ion, we must add a certain amount of resistance to
ransport, in the form of reduced diffusion coefficientsDgdl
ndDcat. The fairly small diffusion coefficients required
btain a good fit (two to three orders of magnitude sm

han for pure gas mixtures), suggest that a macrohom
eous mass transport resistance model may be inadequ

mbinations of fitted parameters

ja (A m−3) Dgdl (m2 s−1) Dcat (m2 s−1)

1e+9 3e−6 3e−7

– – –
– – –
– – –

8.27e+7 – –
1.03e+9 – –

(1.03e+9) 1.66e−7 –
(1.03e+9) – 1.89e−8

(1.03e+9) 1.63e−7 –
(1.03e+9) – 1.76e−8
(1.03e+9) 5.27e−7 2.38e−8

.
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Fig. 7. Oxygen mole fraction profiles in the cathode catalyst layers obtained by fittingσmem, Dcat andDgdl for I = 317 mA cm−2 (left) andI = 356 mA cm−2

(right).

describe the current losses, and an improved model should
be sought.

Finally, we note that for large current densities where the
model predicts severe oxygen depletion, the reaction rate can
even develop an interior maximum within the catalyst layer,
instead of along the membrane/catalyst layer interface, as
seen inFig. 8.

4.3. Adaptive mesh refinement

In this section, we demonstrate the use of adaptive mesh
refinement (AMR) to increase the computational efficiency of
the parameter estimation algorithm. Here instead of refining
all elements of the mesh to obtain the next finer mesh, we
choose only a subset of elements for refinement. To do this
we need an error indicator function that associates a number
with each element of the mesh, which represents an element
contribution to the global error. For simplicity we choose
an error indicator based on the jump in the flux−au′ of a

scalaru between adjacent elements, defined on an element
interfacex by:

Jx ≡ −a(x−)u′(x−) + a(x+)u′(x+), (22)

where the minuses (pluses) denote left (right) limits. For an
elementK = (a, b), the local element error indicator is then
defined by:

e2
K ≡

∑ b − a

24
(|Ja|2 + |Jb|2), (23)

where the summation is over all solution components
{φe, φm, XO2} and over all data points (Ii, Vi).

We now illustrate the effectiveness on the estimation of
membrane conductivityσmem for the conventional PEMFC
data. For the AMR, we sort the elements by their error indi-
cator values and choose to refine those elements in the top
20% while coarsening those elements in the bottom 2%. An
element is refined by inserting a new node at the element
midpoint, while a pair of adjacent elements are coarsened
by removing the common node. The solution on the original
mesh is interpolated onto the new mesh as the new initial
s l
i r
i indi-
c at the
A cal
e sizes
v that
e um-
b nable
p tion.
olution guess (for implementation see[19] or for genera
nformation on AMR see[20]). In Fig. 9 we plot the erro
ndicator values in the catalyst layers, where the error
ators take on the largest values. We can clearly see th
MR refines the mesh in order to equally distribute the lo
rror indicator values, resulting in meshes with element
arying over several orders of magnitude. The result is
ven with a simple error indicator we can reduce the n
er of degrees of freedom necessary to produce a reaso
arameter estimate, resulting in a more efficient computa
Fig. 8. Cathode reaction rates with oxygen limited kinetics.
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Fig. 9. Local error indicators used for adaptive mesh refinement in the anode (top left) and cathode (top right) catalyst layers. Final mesh size distribution
(bottom left) and convergence of membrane conductivity (bottom right).

5. Conclusions

In this study, we have presented an algorithm for estima-
tion of PEMFC model parameters using a constrained nonlin-
ear least squares algorithm. Estimation of five model param-
eters in a simple one-dimensional electrochemistry model
using two different experimental polarization curves has been
demonstrated using this procedure. The potential for further
enhancing the algorithm by integrating it with mesh refine-
ment was demonstrated using an example showing the greater
efficiency and reliability obtained from using initial guesses
computed on coarse grids, as well as locally refined meshes.

This work naturally suggests potential additional research,
including attempting parameter estimation for more complex
PEMFC model equations, two- and three-dimensional sim-
ulations, as well as transient calculations. A key point is the
need for additional data besides polarization curves, such as
local data along the channel of operating cells, net water trans-
fer balances from anode to cathode, or transient polarization
curve data.
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