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Abstract

The problem of parameter estimation is considered for the case of mathematical models for polymer electrolyte membrane fuel cells
(PEMFCs). An algorithm for nonlinear least squares constrained by partial differential equations is defined and applied to estimate effective
membrane conductivity, exchange current densities and oxygen diffusion coefficients in a one-dimensional PEMFC model for transport in
the principal direction of current flow. Experimental polarization curves are fitted for conventional and low current density PEMFCs. Use of
adaptive mesh refinement is demonstrated to increase the computational efficiency.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction tial differential equations (PDESs) for the solution variables,
as well as a set of model parameters, both discrete (finite) or
Mathematical models are now widely used to simulate the spatially distributed (infinite). Suppose also that certain ex-
behavior of fuel cell devices. Such models are desirable be-perimental data are available, which we assume correspond
cause they can provide general trends as well as quantitativeo evaluations of various observable outputs of the solution
measures of relative changes in performance for the devicevariables. The problem is then to find an optimal set of pa-
as model parameters are varied. The models can also provideameter values that minimizes the error between the observed
detailed, localized data that are frequently unavailable from output functionals of the experimental data and those outputs
experimental measurements within an operating cell. calculated using the solution to the mathematical model.
However, the detailed data and parametric studies pro- In the case of fuel cells, while there have been some re-
duced by computer simulations should not be accepted with-cent works which report local current density data using seg-
out appropriate validation with experimental data. This vali- mented current collectof$], typically the experimental data
dation may include reduction of modeling error by comparing are available only for global output quantities such as polar-
a chosen mathematical model to other potential models or re-ization curves, overall water balances, etc. Furthermore, these
duction of parameter error by adjusting the parameters of thedata are actually a set of measurements over a range of oper-
chosen model. In each case, the goal is to minimize the dis-ating conditions as a parameter, such as the average current
crepancy between the computed simulation and the observ-density, cell potential, relative humidity, etc. is varied. There-
able experimental data. Estimation of the model parametersfore, the comparison between model and experiment can only
is the focus of this study. be made globally using data that represent an average perfor-
The problem of parameter estimation can be summarizedmance of the fuel cell. This point is particularly significant
in general terms as follows. Suppose that we have developed an the case of fuel cell stacks, where the local current, mass
mathematical model which takes the form of a system of par- fluxes, temperature, etc. may vary significantly from the av-
erage measured data.
"+ Corresponding author. Tel.; +1 250 7216034; fax: +1 250 7216323, For the case of polymer electrolyte membrane fuel cells
E-mail addressescarnes22@uvic.ca (B. Carnes); ndjilali@uvic.ca (PEMFCs), the mathematical model is chosen to represent
(N. Diilali). various reaction and transport processes within a cell, such as
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convection—diffusion transport, electrochemical reaction and ena in the mathematical model. In addition, we study the

membrane water and proton transport. The solution variableseffects of mesh refinement on the accuracy of the parameter

can include fluid velocity and pressure, species composition, estimation, including the use of locally refined meshes for

temperature, scalar potentials, etc. while the parameters maygreater efficiency and reliability.

include the membrane conductivity, reference exchange cur- The remainder of this work is organized as follows. We

rent densities, electro-osmotic drag coefficient, etc. An ad- first describe our one-dimensional transport model for a

ditional motivation for parameter estimation is the lack of PEMFC. Then we provide an algorithm for parameter estima-

understanding of fundamental transport processes such as mition with PDE constraints based on a nonlinear least squares

gration of protons and liquid water through the membrane, approach. Next, we present numerical results for estimating

which can lead to semi-empirical models with unknown, parameters using conventional PEMFC dimensions and data

sometimes nonphysical parameters, which must somehow bdor regions with no mass transport limitations, as well as for

estimated. an air-breathing PEMFC that is mass transport limited. We
Many mathematical models for PEMFCs have been de- conclude with an example illustrating the effectiveness of

scribed in the literature, ranging from one-dimensional mod- using adaptive mesh refinement.

els in the direction of current or gas fldd~5] to two- and

three-dimensional mode[$—10]. However, most of these

authors do not address the question of parameter estimatior?2. One-dimensional PEMFC model equations

using a systematic approach. Thampan efldl] and Fim-

rite [12] performed parameter estimation for membrane con-  In this section, we define a simple one-dimensional model

ductivity submodels using curve fitting techniques. Suares for reaction and transport within a PEMFC. Since the prin-

and Hoo[13] estimated PEMFC model parameters for the cipal axis of transport of current is in the direction normal

model of Nguyen and Whit¢4], such as exchange cur- tothe membrane, we choose thaxis in this direction, ori-

rent density using an optimization approach. Berg et al. ented from anode to cathode. A schematic of the PEMFC

[1] estimate several parameters using a one-dimensionalayers and dependent variables is showhRim 1

PEMFC model based of¢]. Recently, Guo et al[14] Conduction of electrons through the catalyst layers and gas

have fitted cathode catalyst layer parameters such as porosidiffusion layers (GDLSs) is modeled using a solid electrical

ties, reference current densities and effective diffusion co- potentialge and conduction of the protons in the membrane

efficients using a one-dimensional cathode catalyst layerand catalyst layers is modeled using an ionic potetial

model. In the cathode side GDL and catalyst layer, we model the
In this work, we demonstrate the use of parameter estima-transport of oxygen using the oxygen mole fracti¥g,.

tion for a one-dimensional model for a PEMFC that accounts Conservation of charge and mass, combined with Ohm'’s law

for conduction of protons and electrons, diffusion of oxygen and Fick’s law, yields the nonlinear boundary value problem:

and the electrochemical reactions. We present results on estifind {¢e, ¢m, Xo,} such that

mation of the effective membrane conductivity, effective vol- d

umetric exchange current densities in the cathode and anode- — <ge_¢e> = j, GDLs and catalyst layeys  (1a)

catalyst layers, and effective oxygen diffusion coefficients in dx dx

the gas diffusion and catalyst layers, paying special attention

to the sensitivity coefficients, which indicate the significance

d d
) h ——| om— = —j, membrane and catalyst layers
of a parameter at each data point on the experimental po- dx( mdx¢m> / ystiay

larization curve. The algorithm for parameter estimation is (1b)
based on least squares minimization with constraints arising d .
from the solution of a system of nonlinear PDEs, and is suf- — — <CD—X02) = _L,
ficiently general that it can be extended to multidimensional, dx 4r
transient models, or to include additional physical phenom- cathode GDL and catalyst layer (1c)
V q)e X X02 X
[ S
E— ¢.m 02
n= e‘¢m>
P 0,
anode catalyst cathode n= e‘¢m<0
layer catalyst layer
\\ \\
anode GDL > membrane ~ cathode GDL. X

Fig. 1. Schematic of one-dimensional PEMFC model.
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n = ¢e — ¢m, oOverpotential in catalyst layers (1d) We now define a subset of parameters on which to apply
_ ) o o ) the parameter estimation procedure of Sec8omhese are
Hereoe is the electrical conductivityyy, the ionic conductiv- the membrane ionic conductivitynem the cathode reference

ity, ¢ the molar concentration arid is the molecular diffu- exchange current densiﬂ?f, the anode reference exchange
sivity. The nonlinear reaction kinetics are given by a Butler— cyrrent density;®f, and the oxygen diffusion coefficients
Volmer expression Dgai and Dcg; in the cathode side GDL and catalyst layer,
. respectively. We will assume that all other parameters and
j = Jstexp Bnfn) — exp (6 — nfn)), @ pec Ve b

dimensions are known, and will seek to estimate only these

where js is the exchange current density with= a, ¢ for five parameters.
anode and cathode, respectivgdythe transfer coefficient
the number of electrons transferred ghe: F/RT is a factor

depending on the Faraday const&ntideal gas constarR 3. Algorithm for nonlinear least squares with PDE

and temperatur& [15]. A common assumptio[L0] is that constraints

B = 1/2, in which case we can define= n = —(8 — L)n

and then In this section, we briefly outline the nonlinear least
squares (NLS) approach, introduce the concept of implicit

J = jslexp @fn) — exp (~afn)} = js2 sin h(afn). (3) least squares through PDE constraints, and give an algorithm

, for NLS with PDE constraints.
In general, the transport of hydrogen in the anode GDL and ¢ | 4grangian approach to constrained optimization is

consumption in the anode catalyst layer should be included inwell known (cf.[16,17). As part of this work, an algorithm
the model. However, inthe context of fitting parameters using , - developed by the authors based on extending the La-
polarization curve data, the hydrogen mass transport "mita'grangian approach. This allows for elimination of the La-
tions and resulting overpotential losses are likely to be dom- grange multipliers, avoiding solution of a large coupled sys-
inated by ohmic, cathodic overpotential and oxygen limiting o, for the parameters, solutions, and Lagrange multipliers.
lossed6]. Itis therefore reasonable to assume that hydrogen | . exchange, we must solve additional linear equations for
concentration is nearly constant, while oxygen concentration the sensitivity functions, but can sequentially solve a number

is expected to vary more W'de_ly' _We make t_he assumption ¢ decoupled systems in order to compute each parameter
that the exchange current density is constant in the anode a”(ihpdate

first-order in the cathode Suppose that we haw data pairg(Z;, V;)}, and a fit-

c ¢ ting function 7 = I(x; V) with N parameters. = {/\j}’."_l.
. ref o gref [C02 ) ref [ € ) ¢ 4 J=:
Ja=Ja s Je=Jc ref | = Jc ref | £02- (4) For example, these may be taken as the current deresitgt
s €0, cell voltageV from polarization curve data, as will be done in
The boundary conditions are specified as follows: Sectiond. We would like to choose the parametgris order

to approximate the data at each data pair as:
e anode GDL boundary with the anode gas chanfiek: O;

e GDL/catalyst layer: zero ionic current efom & ¢m = 0; 1A Vi) = 1. (5)
e catalyst layer/membrane: zero electrical current or L N

el e = 0 A common way to do this is to minimize a least squares

edive — _ functional

e membrane/cathode catalyst layer: zero oxygen flux or

—eDd X0, = 0; 1 18

; . _ 2 _ (12

e cathode GDL boundary with cathode gas channel: total po- M(}) = Slmll™ =3 > mi)2,

tential droppe = —dV and reference oxygen mole fraction i=1

Xo, = XM mi() = w104 Vi) — 1), ©)
For conventional PEMFCs with flow fieldX%TbiemWill vary using a NLS algorithm, where the;’s are called the misfits.

along the flow channels, and can be interpreted as an averag&he constants; can be chosen to produce a weighted data
value, while for ambient air-breathing PEMFCs, we can de- fit. For simplicity we takew; = 1 throughout.
fine X%Tb'e”tusing the ambient oxygen composition. In the At a local minimum we must havé M = (Vm)"m = 0,
fitting procedure later, we only consider the oxygen equation or
for ambient air-breathing PEMFCs. "

We specify a given potential dropVd solve the model om;

. : > mi—— =0, (7)

equations, and then calculate the current density by com- oA
puting the electrical current = —oe%qbe evaluated at the
cathode GDL boundary. The cell voltage is then computed to which defines the set of solutions of the NLS problem. In
beV = Vyc — dV, whereVyis the experimentally measured order to solvg7), we can apply Newton—Raphson iteration.
open circuit potential. The system that we solve for the updaieat each iteration

=
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takes the form/ §A = r, where subject to the constraints
M .
om; R'(u;, A) = 0. 12
}’jE—Zmiﬁ, (ul ) ( )
i=1 / The main difference is that the misfit functional is now a
o M Cams om 2m. function of the solution variable rather than the parameter
Jao= 2 _ o o, O (8) . The dependence af on X is implicit in the constraints.
) an; Ak anom - i i I
ki Jj Mk JOMk We will assume for simplicity thdtis linear, so that’ (u)v =
1(v).

It we assume each is small, we can drop the second term A standard approach to solving the constrained parameter
and solve using the Gauss—Newton method, which takes the bp 9 P

estimation problem is to introduce Lagrange multipliers, one
form M §, = r, where .
for each solution;, and solve a large coupled systghi]. It

M om; om; turns out that we can eliminate the Lagrange multipliers and
My = Vv 9) solve the constrained parameter estimation problem using a
i=1 Ok slightly modified form of the Gauss—Newton iteration(9),

One advantage to this approach is that we only need to calcu-Provided that we can c_:alculate th_e partial derivati%%sand
late the first-order partial derivativ%%;—_’ and no second-order  the components:;. Using the chain rule, we can calculate
derivatives. '
. s am . om; om; ou; ou; ou;
The partial derivativeg? are often called the sensitiv- — = — — =T'(u))— =1(—). (13)
. - i e oA ou; OAj oA oA
ity coefficients, because they measure the sensitivity of the

ith misfit to perturbations in thgh parameter. They are also Thus, if we could calculate the partial derivativ%g_, we
important to the question of solvability of the NLS problem, J

which is also called the problem ifentifiability (see forin-  could evaluat%f—j{. To see how to obtain these functions, we
stancg16]). Invertibility of the matrixM is equivalentto the ~ differentiate each PDE w.r.t; to obtain:
vectorsa/ = (%, s ag"T’Y’) € RM being linearly indepen- . .

] ] . OR' 0u; IR
dent. If the vectors are nearly linearly dependent, then the — — 4 — —
NLS problem can be difficult to solve and may even fail to i 9 = 94,
converge. Thus, before proceeding with any NLS problem, Thus, by solving the auxiliary equations:
it is prudent to identify any linear dependence in the vectors
ol aR! R

The NLS approach described above is adequate when wea_uiwij = _BTJ-’ (15)

have an explicitexpression of the fodm= 1(%; V). However,
often we are interested in solving stationary or transient PDESye obtainw;; = 3% and thusg% = I(w;)).
with specified input valu¥ and postprocessing the solution We now define an algorithm for parameter estimation with
to obtain the output valug or vice versa. The parameters ppg constraints shown in the box below.

» are then the parameters of the PDE, and the “function”  gecayse the system in step (2) involves summation over
1= 1I(%; V) is computed by solving the PDE. _ the data index, we can perform each iteration of the algo-

In this case, we must modify the NLS approach to in- jihm which consists of steps (1-3), by looping ovend
clude the PDE constraints and to handle the implicitly de- thenj. Practically speaking, this means that we need only
fined output function. If we denote the differential operator ¢, and store the Jacobian matrix associated with the dif-
that models the the PEMFC by = R(u, 2; V), then solu-  torenig| operatoB®- once for each indein step (1) of each
tionsu = u(%; V) are defined by solving: iteration. The linear systems can be solved by an LU factor-
R(u,A;V) =0, (10) ization of the Jacobian matrix or else an iterative solver can be

applied. The finite dimensional approximate solution vectors

for given values of. andV. The output, is calculated as a  associated withu; andw;; are stored for the entire iteration
functional of the solution, in the formh = /(). We denote  for use in step (3). Thus, the cost of each iteration of the algo-
the residuals for each valog by R'(u, 1) = R(u, A; V;) with rithm is the same as solving(M + 1) Jacobian systems. The
corresponding solutiong = u;(1). additional solution of the Gauss—Newton system in step (2)

The constrained parameter estimation problem can thenis then negligible. The result is the simultaneous calculation
be expressed as follows: findand A that minimizes the  of the optimal parameters;, the corresponding solutions,

(14)

functional the misfit valuesn;, and the sensitivity coefficien%’—{.
J
1 1M This algorithm can be implemented in any computer code
2 2 ) : ) )
M(u) = Slimll™ =3 E lmi(ui)l%, which allows access to the Jacobian matrix and residual vec-
i=1

tor and the linear algebra solver. If the partial derivati%%e
mi(u;)) = I(w;) — 1, (12) cannot be calculated explicitly, we may approximate them
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1)

)

®3)

Algorithm for NLS with PDE constraints
Initialize u; for initial A by solving R (u;, 1) = 0.
Compute updatesy; andéx ; as follows:
forn=1,2,...do

end for

Computem; = I(u;) — I;. Solve for initial Su; and

functionsw;;

AR ; N

—3du; = —R' (Newton—Raphson iteration) (16a)
I

AR

o =
314,' Y

AR

- 16b
oy (16b)

SolveM 81 = r using modified Gauss—Newton itert
ation

M
rj=—y {mi+ 1(ui)}(w),

(17a)
i=1
M

M =" I(wij)(wir). (17b)
i=1

Updatesu; using correction fon

N

Sui+ = Z w;joA . (18)

J=1

Updateu;+ = du; andi j+ = 84 j, possibly with step
size control.

using the finite difference approximation:

AR!
M

P ;[Ri(ui, o+ sej) — Riui, V)],

! (19)

wheree; is thejth coordinate vector and< 1. If the code )

does not permit access to the Jacobian matrix, then we may€Vised.

directly approximate the partial derivativ%%% using:
J

om;

oA

whereu; (1) is the solution calculated at the parameter value

A

We now apply the parameter estimation algorithm to our

=

1
€

[mi(ui(x + gej)) — mi(ui(2))], (20)

PEMFC model equations.

4. Application to the PEMFC model equations

The solution to the differential equations is approximated

and apply the iterative algorithm, which usually converges
in about four to eight iterations, to solve for approximate
solutionsu;, and parameters j,. Then we refine the grid

and project the current approximate solutions onto the fine
grid. Using the projected solutions as the initial guess we
apply the iterative algorithm to obtain new approximate so-
lutions and parameters. After sufficient levels of mesh refine-
ment, the parameters tend to converge to a mesh-independent
value, which we take as the final estimated parameter
value.

The mesh refinement can be uniform, meaning that all cells
are refined, or adaptive, meaning that we selectively refine
cells based on a local error indicator function. Our computer
code reports the values of the parameters calculated at each
iteration for each mesh, which reveals the convergence of the
parameter estimation algorithm on each individual mesh, as
well as the convergence of the finite element approximation
to the parameters.

We consider data from two different PEMFCs, which
are shown inFig. 2 The first data set is for a conven-
tional PEMFC design using polarization data reported by
Ticianelli et al.[18], while the second is an air-breathing
PEMFC vyielding lower current densities. We also plot our
best fitted polarization curves, corresponding to the simulta-
neous fitting ofomem and j; for the conventional PEMFC
and to omem Dcat, and Dgq for the low current density
PEMFC.

In the parameter estimation procedure, we can choose to
fit parameters individually, or simultaneously. While the for-
mer approach is numerically more reliable, it may not rep-
resent the coupling between the parameters. Therefore, the
latter approach is preferred based on physical grounds. We
choose to perform both approaches, in order to demonstrate
the variation in the fit of the parameters. When a great deal of
variation of a fitted parameter is seen using different combi-
nations, this can be an indication that there is strong coupling
between the parameters. In this case the data can be fit by
multiple sets of parameters, and the model may be need to be

4.1. Conventional PEMFC

We first fit our one-dimensional PEMFC model to the con-
ventional PEMFC polarization curve.

4.1.1. Initial parameters

We take the physical dimensions of each layer and ini-
tial transport and reaction properties from Berning efal.
which we summarize iffable 1 The experimental data are
from Ticianelli et al.[18] and takes the form of a curve fit

1
V:Vo—blog(l—>—RI, (21)

0

at each step of the parameter estimation algorithm by a stan-with parameter valuegp = 0.935V, b =0.065V, Iy =
dard Galerkin finite element method using piecewise lin- 1mAcm 2, and R = 0.39¢cn? S~1. The electrode is pro-
ear basis functions. We begin with an initial coarse grid duced with a catalyst loading of 0.35mg Ptcfrwith 4%
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We present irFig. 3the dimensionless sensitivity coef-
ficients‘;%{ for all three parameters, calculated at the initial

‘ —e— ffﬁ‘;i?:f.ﬂaégﬁﬂgc vg_lu_es. Bec_at_Jse of the near linear dependence of the sen-
08-% _ _O_E' _ fitted conventional PEMEC sitivity coefficients foromem and ja, we expect that these
X — -~ - fitted low current PEMFC parameters may be coupled.
Another interesting observation to make abéig. 3
is the variation in sensitivity as the average current den-
sity | is varied. While the sensitivity coefficients faery,
and j; remain fairly constant, the sensitivity coefficients
for j. are largest for small, and decrease exponentially
as| increases. This can be explained by the difference in
the type of voltage losses. For the membrane, the ohmic
loss is a linear function of the current with constant sen-
sitivity to the conductivity, while for the cathode electro-
L chemical reaction, the loss is a logarithmic function of the
0 200 400 600 800 current with decreasing sensitivity to the reaction rate as
Current density [mA/cm~2] | increases. By linearizing the anode reaction rate, it can
be shown that the anode loss is also a linear function of
Fig. 2. Experimental and fitted polarization curves for conventional and low the current, and thus, behaves as the membrane conductiv-
current PEMFC designs. ity.
In many studies, the catalyst layers are modeled as thin
interfaces or using a constant overpotential.Fig. 4 we
Nafion, the membrane is Nafion 117, avigt = 0.935. The plot the overpotentialy in the anode and cathode cata-
PEMFC is operating on humidified hydrogen/air at pressures lyst layers for the initial parameter values and varying cur-
of 3/5 atm at80C. Because the data are fitted to lower current rent densities in order to illustrate the effect of solving a
density data, mass transport limitations are not significant. one-dimensional model for behavior that cannot be mod-
Therefore, we do not include the oxygen transport equation, eled using a reduced model. The maximal absolute val-
assuming that the oxygen concentration is at the referenceues of occurs along the membrane—catalyst layer inter-

06

Voltage [V]

04

value. We seek to fit the parametetgem, jc, and ja (drop- faces, where the rate function has its largest absolute value.
ping the superscript oyf’f). The larger rate constant at the anode results in faster ki-
For fully humidified Nafion 117, we expeatmem~ netics and a smaller reaction region near the interface. We

8Snt! from experimental measurements of the protonic do not plot the solutions elsewhere, singg varies lin-
conductivity of Nafion. We choose the initial value of early within the membrane, anf} is nearly constant in the
omem = 6 SnT ! following [6]. The exchange current den- GDLs.

sities are typically available as surface reaction rates; for
example, in[6] they use values of, = 6.0e+3Am—2 and

jc = 4.4e—~3Am~2. In order to derive effective volumetric
exchange current densities, we must multiply by a correc-
tion factor that has units of 1 ™. Ideally this factor should
account for the surface:volume ratio, the porosity of the cat-

4.1.2. Estimated parameters
We now estimate the parameters using our parameter es-
timation algorithm. We first compare the results obtained by

alyst layer, as well as the amount of Nafion anq Pt applied 2 ep i e conductvity
when the catalyst layer was formed. We take our initial guess WS E ——&—— cathode exchange current
for the effective volumetric exchange current densities as 1F ——6—— anode exchange current
ja=1e+9Am =3 andj. = 2e+6 Am3, -2
;
2
Table 1 e
Initial physical transport and reaction parameters for conventional PEMFC 5
(7]
Anode Membrane Cathode
Gas diff.  Cat. Cat.  Gas diff.
layer layer layer layer :

. T ST ST S ST N TN [N SN SN T [N SN R |
Thlckn(iisl (wm) 260 28 230 28 260 P 200 200 500 00 S500
oe (Sm) 6000 6000 0 6000 6000 Current density [mA/cmA2]
om (SnTl) 0 0.6 6 0.6 0
: -3
(]XS (Am™) ée5+9 f%+6 Fig. 3. Initial dimensionless sensitivity coefficients for conventional

PEMFC.
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0.08 -
-0.05
0.06 paaipats st
= = 01f RN
c = i
B 004 § _
=} =]
& g osr —a—1=10
> > =
—a— | =40
S o002 o ———1=150
——— | =300
0.2 —<—— | =600
——— 1=1000
0 —e— 1=1400
7..111\ T IR S S S T T S AT I IR N ! | R ST S S
2.6 2.65 2.7 2.78 2.8 2.85 5.2 5.25 5.3 5.35 54 5.45
x [1e-4m] X [1e-4m]
Fig. 4. Initial overpotential in anode (left) and cathode (right. given in units of mA cm2.
Table 2 coefficient is small, the term i) multiplied by the coeffi-

Estimated parameters on fine grids for conventional PEMFC using different cient will also be small. and thus can be neglected Therefore
binati f fitted t . ’ ) . .
combinations of iec paramerers we choose to estimatg using current density only in the

omem (S M) Je (Am~%) ja(Am~) range ofl < 300 mA cn?, where the sensitivity is largest.
Initial 6 2e+6 le+9 Inclusion of j is thus key to fitting low values df whereas
Fitted 7.67 - - inclusion ofomem is required for the entire range bf This

- 9.79e+5 - is consistent with the dominance of activation losses at low

(7.67) - 1.43e+9 current densities and of ohmic losses at higher current den-

829 2:50e+6 - sities, and explains why the best fittings are obtained using

9.24 - 9.60e+8 o 4 o : :

(7.67) 2 66646 9.02e+8 the combination§omenm, jc} and{jc, ja} (with the fittedomem

, - , , — value).
Values in parenthesis were fixed but chosen different from the initial guesses. )

estimating each parameter separately, and then using combi4.2. Low current density PEMFC
nations of parameters. The converged values are reported in

Table 2 _ . _ We now fit our one-dimensional PEMFC model to the low
Convergence of the estimated valuesdgemusing uni-  current density PEMFC polarization curve.
form mesh refinement is shown Kig. 5. We can see con-

vergence of the parameter estimation algorithm on each grid
to a valueij,, as well as convergence of the valugs as i
the mesh is refined. When we 6igem or bothomem, Jjc, the 14
value is close to the fully humidified conductivity of 8 Sth
for Nafion 117. However, fitting with botbmem, ja Yields a
higher value obmem by fitting a lower value ofja.
We saw inFig. 3that the sensitivity of the current density

to jc decreases dramatically liscreases. When a sensitivity

———=—— membrane + anode
———— membrane + cathode
———e&—— membrane only

Membrane conductivity [S/m]
>

Table 3 SEEEEEE
Initial physical transport and reaction parameters for a low current PEMFC =~ & ||  Begeef Sooooo=se
Anode Membrane Cathode 8
Gas diff. ~ Cat. Cat.  Gas diff.
layer layer layer layer
Thickness| (wm) 130 20 60 20 130
oe (S 100 100 0 100 100 , ‘ p i w wora i
om (Sl 0 0.2 2 0.2 0 0 10 20 30 40
Do, (m?s™1) 0 0 0 3e-7 3e-6 lterations
Jjs (Am~3) le+9 2e+6

o 0.5 15 Fig. 5. Convergence a@fmem for various parameter combinations.
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10° The fitting of the parametersmem ja, and jc is per-
= formed using only data witli < 200 mAcnT? and is sim-
2 ilar to the case of the conventional fuel cell (see first
S section of fitted parameters iflable 4. However, the
2 fitted membrane conductivity is now closer to 1Sm
g 10" which corresponds to partially humidified operating con-
R . ' ditions. In addition, the fitted cathode rafg is an or-
7] ———-=—— Membrane conductivity . s . .
E | ——— Cathode exchange current der of magnitude lower than the initial value, which is
© —+—— Anode exchange current caused by using the effective value of-2eSnt? for
%10?- e Cae ggt‘;',:f;sl':;ef‘c’,‘z";ff',i';‘ion tehri effective membrane conductivity in the catalyst lay-
:‘; i We nextfit the effective oxygen diffusion coefficiedgg,
',‘Z', - and D¢4; (second section of fitted parametersTable 4 for
3 the large current datal & 200 mA cnt2) using the fitted
10° omem Jja, @and jc values. The data can be fitted by reducing
T P M= either Dgqi Or Dcat by an order of magnitude, representing
Current density [mA/cm#2] an additional mass transport resistance, such as liquid wa-

ter flooding. We can also fit the diffusion coefficients, indi-

Fig. 6. Initial dimensionless sensitivity coefficients for a low current vidually or simultaneously, along withynem over the en-
PEMFC. tire polarization curve, using the fitted values farand jc
4.2.1. Initial parameters (third section of fitted parametersTable 4. We plot inFig.

We adjust the dimensions and parameters for an air- 7 the oxygen profiles in the cathode catalyst layer for dif-
breathing PEMFC which exhibits mass transport limitations ferent current densities and parameter fittings. Fittihg
at relatively low current densities as shownFig. 2 This results in a nearly constant, low oxygen concentration in
cell uses a thinner membrane (Nafion 112) and thinner lay- the catalyst layer, while fittingDc4t results in a steep gra-
ers, which we summarize ifable 3 The temperature is now  dient in oxygen concentration in the catalyst layer. Simulta-
specified as 60C, Voc = 0.912, and the ambient oxygen neous fitting lies somewhere in between, and distributes the
mole fraction is specified as 0.21. Because of the reducedmass transfer resistance between the GDL and the catalyst
slope of the polarization curve, we begin with a lower value layer.
for the membrane conductivity. The oxygen diffusion coef- ~ While simultaneous fitting provides the best possible data
ficient in the GDL is reduced by an order of magnitude to fit over the entire curve, all three fits are similarly good. The
account for the porosity and tortuosity of the diffusion layer; problem lies not in the parameter estimation procedure, but
in the catalyst layer this parameter is reduced by another or-in the choice of the mathematical model. In order to fit the
der of magnitude to model additional resistance at reactiondrop in current density of the data using the oxygen equa-

sites (sedig. 6for initial sensitivites). tion, we must add a certain amount of resistance to mass
transport, in the form of reduced diffusion coefficieffiigq,
4.2.2. Estimated parameters and D¢at. The fairly small diffusion coefficients required to

We now apply the parameter estimation to the data for obtain a good fit (two to three orders of magnitude smaller
the low current PEMFC design. The converged estimated than for pure gas mixtures), suggest that a macrohomoge-

parameters are showniable 4 neous mass transport resistance model may be inadequate to
Table 4
Estimated parameters for fine grids for low current PEMFC using different combinations of fitted parameters
Omem (SMTY) je (Am=3) ja(Am=3) Dy (m?s™) Dear (M?s™1)
Initial 2 2e+6 le+9 3eb6 3e-7
Fitted 0.715 - — — -
- 3.71e+5 - - -
1.02 3.41e+5 - - -
- - 8.27e+7 - -
(1.02) (3.41e+5) 1.03e+9 - -
Fitted (1.02) (3.41e+5) (1.03e+9) 1.668 -
(1.02) (3.41e+5) (1.03e+9) - 1.898
Fitted 1.10 (3.41e+5) (1.03e+9) 1.638 -
1.16 (3.41e+5) (1.03e+9) - 1.768
1.15 (3.41e+5) (1.03e+9) 5.278 2.38e-8

Values in parenthesis were fixed but chosen different from the initial guesses.
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Fig. 7. Oxygen mole fraction profiles in the cathode catalyst layers obtained by &g Dcatand Dyq for I = 317 mA cnt2 (left) andl = 356 mA cn2
(right).

describe the current losses, and an improved model shouldscalaru between adjacent elements, defined on an element
be sought. interfacex by:

Finally, we note that for large current densities where the
model predicts severe oxygen depletion, the reaction rate can
even develop an interior maximum within the catalyst layer, Jx = —a(x")u'(x7) + a(x")u’(x™),
instead of along the membrane/catalyst layer interface, as
seen inFig. 8

(22)

where the minuses (pluses) denote left (right) limits. For an
elementK = (a, b), the local element error indicator is then

4.3. Adaptive mesh refinement i
defined by:

In this section, we demonstrate the use of adaptive mesh

refinement (AMR) to increase the computational efficiency of bh—a

the parameter estimation algorithm. Here instead of refining ¢4 = Z W(IJaI2 + 1 Jl?),

all elements of the mesh to obtain the next finer mesh, we

choose only a subset of elements for refinement. To do this

we need an error indicator function that associates a numbemwhere the summation is over all solution components

with each element of the mesh, which represents an elemen{¢e, ¢m, Xo,} and over all data pointdy V;).

contribution to the global error. For simplicity we choose We now illustrate the effectiveness on the estimation of

an error indicator based on the jump in the fluxu’ of a membrane conductivitgmen for the conventional PEMFC
data. For the AMR, we sort the elements by their error indi-
cator values and choose to refine those elements in the top

(23)

1800

20% while coarsening those elements in the bottom 2%. An

= 2 —

1600 E%ggz %Eﬁi - el_eme_nt is re_fined b)_/ inserti_ng a new node at the element
5 1400 : midpoint, while a pair of adjacent elements are coarsened
5 1200 by removing the common node. The solution on the original
% . mesh is interpolated onto the new mesh as the new initial
T 800 solution guess (for implementation sg®] or for general
5 information on AMR sed20]). In Fig. 9 we plot the error
= 600 T . T
g indicator values in the catalyst layers, where the error indi-
e 400 cators take on the largest values. We can clearly see that the

o) AMR refines the mesh in order to equally distribute the local

0 error indicator values, resulting in meshes with element sizes

-200

Fig. 8. Cathode reaction rates with oxygen limited kinetics.

241 2.15 2.2
x [1e-4 m]

2.25 2.3

varying over several orders of magnitude. The result is that
even with a simple error indicator we can reduce the num-
ber of degrees of freedom necessary to produce a reasonable
parameter estimate, resulting in a more efficient computation.
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Fig. 9. Local error indicators used for adaptive mesh refinement in the anode (top left) and cathode (top right) catalyst layers. Final meshusiae distri
(bottom left) and convergence of membrane conductivity (bottom right).
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