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Abstract

The small size and low damping of MEMS oscillators give rise to phenomena that are not observed routinely at the macroscopic scale.
In this work we document and explain an experimentally observed transition in the response of a doubly clamped micromechanical oscillator
with pretension. The transition from softening to hardening is repeatedly observed upon increasing the power of an incident sensing laser beam,
a procedure routinely used to improve signal strength during optical detection of resonant motion of microstructures. At intermediate laser
power, a novel resonant response that displays characteristics of both softening and hardening in the same sweep, is observed experimentally.
Increased laser heating of a structure in tension may be expected to increase softening behavior. Using tools from non-linear dynamics and
continuum mechanics, we show that the observed counter-intuitive behavior can be explained by a competition between the opposing responses
of linear and non-linear stiffnesses to a change in temperature.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The promise of using MEMS oscillators to supply extremely
small sensors and time reference devices at low cost and with
low power requirements has captured the imagination of in-
dustry and academia, leading to a flurry of activity in this
field. Recent works have demonstrated potential for a num-
ber of exciting applications. For example, Ekinci et al. [1]
explore the limit of MEMS oscillators as ultrasensitive mass
sensors. Ilic et al. [2] used MEMS oscillators as sensors for the
detection of E. coli. Blom et al. [3] successfully used MEMS
oscillators to measure fluid density and viscosity. MEMS
oscillators have also been used as reference oscillators [4] and
to demonstrate signal processing [5] functions. Recently, Hop-
pensteadt and Izhikevich [6] built a theoretical framework for
using an array of MEMS oscillators as a mechanical neuro-
computer that should, theoretically, be capable of rapid pattern
recognition.
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Although these systems are large enough that they can be
modeled by the continuum hypothesis [7], their small size
makes them particularly sensitive to non-linear effects, due to
either the inherent non-linear mechanics of the device itself
[8,9] and/or to non-linearities in the transduction mechanism
and its interaction with the device (see [10,11]). These non-
linearities give rise to systems that are rich in dynamics. For
example, Turner et al. [12] observed five parametric resonances
in a micromechanical system. While non-linearities are often
seen as undesirable for several applications based on linear
oscillators, Turner et al. [13] recently proposed using the non-
linear nature of MEMS oscillators to enhance the sensitivity
of mass detection. Whether the non-linearities are desirable are
not, it is important to have a complete understanding of the
non-linear nature of the device. Once the dynamics are well
undersood, this knowledge can be exploited to design for spe-
cific performance objectives.

This work reports counter-intuitive non-linear phenomena
observed in forced paddle-beam MEMS oscillators with optical
detection of motion. We demonstrate the experimental realiza-
tion of non-linear behavior that can be tuned from softening to
hardening by increasing the power of a laser beam focused on
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a silicon nitride MEMS structure with pretension. This transi-
tion is counter-intuitive as increased laser heating may be ex-
pected to reduce pretension and lead to softening spring behav-
ior. The transition is understood through a thermal–mechanical
model in which the linear and the non-linear stiffness contri-
butions are shown to have opposing responses to temperature
change.

We start with a description of the experimental setup and ob-
servations. We then develop a simple model for the oscillator
and estimate its parameters. Continuation algorithms are used
to track periodic solutions of the oscillator model and results
from numerical continuation are compared to experimental ob-
servations.

2. Experimental setup

The MEMS structure shown in Fig. 1(a) is a silicon nitride
paddle-beam oscillator. A film stack consisting of a 0.2 �m
thick low-stress LPCVD (low pressure chemical vapor de-
position) silicon nitride layer over an annealed 1.5 �m thick
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AC coupled photodetector
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piezo actuator
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beam splitter

10 μm

Fig. 1. (a) SEM image of top view of the paddle oscillator. (b) Schematic
of the experimental setup.

sacrificial layer of silicon oxide is grown on silicon wafers. Sil-
icon nitride optical constants (n, k), as measured by ellipsome-
try, are found to be (2.01,0.046). Oscillators with a beam length
of 18 �m, beam width of 2.0 �m, paddle size 10 �m square,
and a suspended height of 1.5 �m above the silicon floor are
fabricated in the silicon nitride layer. Lateral dimensions have
a measurement uncertainty within 5%; the uncertainties in film
thickness (device and gap thicknesses) are within 4% of the av-
erage values; use of the results of finite element method (FEM)
simulations does not predict a change in non-linear features
for the model within this range. Essentially, the paddle-beam
MEMS structure can be viewed as a doubly clamped beam with
a flat, square plate at its center. Undercuts at the beam clamping
points, typically greater than half the maximum lateral dimen-
sion of the largest structure on the chip, are normally obtained
when a (usually unwanted) removal of sacrificial oxide support
below the clamping points accompanies etching of the oxide
required to create the suspended microstructures. Since large
undercuts can lead to a reduction in stiffness and coupling to
neighboring microstructures, we used an additional step to min-
imize the undercuts at the beam clamping points. In this step,
small holes were first patterned in the nitride film and a timed
preetch was used to remove most of the underlying sacrificial
oxide, leaving a minimal supporting sliver underneath the in-
tended paddle-beam locations. This reduced the required time
for the final releasing etch, as well as the undercut, to about
10% of the normal value; this small undercut was included in
FEM simulations.

The oscillator is driven by a piezoelectric disk element from
a commercial buzzer with the harmonic driving signal ob-
tained from the tracking generator of a spectrum analyzer. All
experiments are performed in a chamber in which a vacuum
of 4 × 10−7 torr is maintained. The motion of the paddle is
detected by the interferometric modulation of a laser beam
(Helium–Neon, 633 nm) focused on the paddle using a mi-
croscope objective. The intensity modulation is detected and
amplified by an ac-coupled photodetector and converted to
spectral information by the spectrum analyzer (see Fig. 1(b)).
Other functional details of the experimental setup used here
have been described earlier [14,15].

3. Experimental results

Using the setup described in Fig. 1(b) the amplitude of
vibration is measured as the driving frequency is swept forward,
i.e. from below to above the resonant frequency. Amplitude
is also measured as the driving frequency is swept in reverse.
Experiments with several micro-oscillators on the same chip,
with the same paddle dimensions but with beam lengths vary-
ing from 5 to 18 �m revealed a linear torsional mode and non-
linear translational modes, one of which undergoes a softening
to hardening transition with increasing laser power. After visu-
ally observing this response to a continuous variation of laser
power in several device sizes, one size (18 �m beams) is cho-
sen for detailed study. For this device, using a constant forc-
ing amplitude of the piezo drive, the laser power is varied in
steps and amplitude response data gathered at each laser power.
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Fig. 2. (Color online) Experimentally obtained (a) softening curve at low laser power, is characterized by a shorter peak and a jump for the forward sweep
direction (blue curve) and a taller peak and drop for the reverse sweep (red curve); (d) hardening curve seen at high laser power; (b) and (c) show transitional
curves at intermediate laser powers. Curve in (b) has the softening behavior in (a) with an added drop jump feature of (d). The relative laser power for
(a):(b):(c):(d) is 5:6:8:9 (one unit 45 �W). All plots are normalized to 0.825 MHz. The amplitudes are normalized by the height of the taller peak in each plot.
Each curve is a single sweep in frequency.

The transitional features identified in Figs. 2(b) and (c) were
visually confirmed by twice revisiting the same laser power
values. The recorded variation in the measurement of power
levels is within ±1.4% of the reported value.

The results in Fig. 2 show that as the power of the laser
used to detect the motion increases, the response of the first
bending mode of oscillation changes from softening, Fig. 2(a),
to hardening, Fig. 2(d). Fig. 2(a) shows the jump and drop
response expected from a softening oscillator. Figs. 2(b) and
(c) show a transition from softening to hardening. The curves
in these figures have characteristics of both softening and hard-
ening backbone curves (for a discussion on backbone curves
see [16]). The forward and reverse sweeps in frequency each

display both a jump and a drop. To the best of the authors’
knowledge, no thermo-mechanical systems have been shown
to display such transitional behavior. Electrostatically actuated
systems, however, have shown softening–hardening transitions
[17]. In Fig. 2(d) the system displays pure hardening behavior.
The displacement difference between forward and reverse sin-
gle sweeps seen in Fig. 2(a) is within the bounds of uncertainty
for single forward sweeps or reverse sweeps. These sweeps
should therefore be interpreted as the same branch, within the
limits of experimental error.

The rest of this article is dedicated to understanding and
modeling the softening–hardening transition that occurs in
optically transduced paddle-beam MEMS oscillators. The
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objective of the modeling effort is to capture the essential
dynamics that causes the transitions.

4. Theoretical model

Experimentally observed resonance curves (Fig. 2) suggest
a stiffness-mediated non-linear response of an oscillator. Esti-
mated effects of photon pressure, Casimir forces and air damp-
ing are found to be negligible. Given the size of the oscillator,
we model it using a continuum approach. The paddle oscilla-
tor has membrane stress contributions from the intrinsic stress
in the silicon nitride film, induced thermal strain and large-
deflection effects. These membrane stresses result in changing
linear and non-linear stiffnesses, thus the Duffing equation is
used to model the first translational mode of oscillation of the
paddle-beam MEMS structure. The forced Duffing equation
can be written as

mẍ + cd ẋ + k1(x + �′x3) = F sin(�t), (1)

where m, cd and k1 are the mass, damping and linear stiffness
of the spring mass system, �′ is the ratio of the cubic stiffness
term to the linear stiffness term, F is the forcing amplitude, �
is the forcing frequency, x is the amplitude of deflection of the
beam and t is time. Eq. (1) can be rewritten as

z̈ + ż

Q
+ (z + �z3) = Fs sin(�t), (2)

by dividing the entire equation by m, � (wavelength of the
incident laser used to measure deflection) and rescaling time

by �0 =
√

k1
m

. In the above equation, �=�′�2, Fs = F

m�2
0
, z= x

�

and Q = m�0
cd

.

Although Eq. (2) captures the mechanical response of the os-
cillator, it fails to capture the thermal effects of the laser. The
incident laser beam is partially absorbed by the MEMS struc-
ture; the rest is either reflected or transmitted through the struc-
ture. The transmitted light is partially reflected off the silicon
substrate and interferes with the light transmitted through the
MEMS structure. A Fabry–Perot cavity results from the partial
reflections along with the process of interference [10,18]. As
the paddle-beam structure oscillates, it is heated or cooled de-
pending on whether the paddle is at a maximum or a minimum
of the intensity pattern due to interference.

To model the thermal aspects of the system we use a lumped
thermal mass model with Newton’s law of cooling. Hence the
thermal equation is

Ṫ = −BT + HPabsorbed(z), (3)

where T is the temperature of the MEMS structure above am-
bient, H is the inverse of the lumped thermal mass of the
MEMS structure, B is the rate of cooling due to conduction and
Pabsorbed(z) is the absorbed energy due to the incident laser and
is a function of deflection of the structure. Radiation effects are
neglected since the most generous estimate shows that cooling
due to radiation is less than 3% of the cooling due to conduc-
tion. For a more detailed discussion on the thermal modeling

see [10]. Time in Eq. (3) is rescaled by �0. Thermal membrane
stresses affect the bending stiffness, thus Eq. (2) can be written
with temperature dependent stiffness terms:

z̈ + ż

Q
+ f (T )z + g(T )�z3 = Fs sin(�t). (4)

The mass, damping, forcing amplitude and frequency are as-
sumed to be independent of T. Eqs. (3) and (4) form a system of
equations that model the first mode of vibration of the MEMS
structure. We need to estimate the different parameters that are
part of the system of equations; they are H, B and Pabsorbed(z)

in Eq. (3) and Q, f (T ), g(T ), M and � in Eq. (4).

5. Estimation of parameters

Base units for the analysis are: time: �s, mass: mg, length: �m
and temperature: K. The results will, of course, be no different
for any other units.

5.1. Thermal parameters and functions

The out-of-plane deflection changes the gap height of the
oscillator which in turn influences the interference pattern and
the heat absorbed. We model this using the standard formula-
tion of the Fabry–Perot interferometer [18]. A plot of absorp-
tion vs. deflection (normalized with respect to �) is shown in
Fig. 3, for 0.2 �m thick silicon nitride with a gap of 1.5 �m,
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Table 1
Material properties of silicon nitride [21,22].

E 300 GPa (calculated)
� 2900 kg/m3

� 1.3 × 10−6/K
k 3 W/mK
	 0.28
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Fig. 4. Plot of temperature vs. time at the center of the paddle for absorbed
power of 0.3 �W (obtained from FEM simulations).

and (n, k) values obtained from ellipsometry with no signifi-
cant change with temperature anticipated [19]. The absorption
function Pabsorbed can be approximated as

Pabsorbed = P(� + � sin2(2�(z − z0))), (5)

where P is the applied laser power in �W. From Fig. 3 � ≈
1.325 × 10−1, � ≈ 8.4 × 10−2 and z0 ≈ 5 × 10−2. Fig. 3
also gives a measure of how close the approximation, � +
� sin2(2�(z − z0)), is to the theoretical calculation.

To estimate H and B, a thermal finite element model is
built and analyzed [20] using the material properties given in
Table 1. The boundary condition at the ends of the beam is
T =0. The paddle-beam MEMS structure is initialized to T =0.
A surface heat flux of 3 × 10−4 �W/�m2 is applied on the
square paddle structure, corresponding to an absorbed power
of 0.3 �W. A transient FEM thermal simulation gives the tem-
perature distribution at every step. Since the thermal system is
first order, the response of temperature T versus time t will fol-
low the standard first-order response curve (see Fig. 4). This
implies that as t → ∞, T → HP

B
(see Eq. (3)). Also, the slope

of the response curve at T = 0 is Ṫ = HP. Using this informa-
tion, the values of H = 2.99 × 10−2 K/�W and B = 4 × 10−3

(dimensionless) are obtained after rescaling time with respect
to �0 =2�(0.825) rad/�s (experimentally obtained natural fre-
quency). So Eq. (3) now becomes

Ṫ = −BTs + HP(� + � sin2(2�(z − z0))), (6)

with all the values of the parameters determined.

5.2. Mechanical parameters and functions

The torsional frequency of oscillation of the beam is
experimentally found to be independent of the laser power (and
hence the tension in the beam). This is to be expected, since
the tension does not directly oppose the twisting of the beam,
although it does oppose the transverse deflection. Thus, using
the measured torsional frequency of oscillation, the value of
the shear modulus (G) is computed. Young’s modulus E (for
silicon nitride) is computed using E = 2G(1 + 	) and a hand-
book value for Poisson’s ratio, 	, (see Table 1), along with the
assumption of isotropy [23]. A discussion on the measurement
of the material constants of thin film silicon nitride can be
found in [21,22]. The fabrication step leaves the silicon nitride,
and hence the beam, in tension. Using the value of E and the
measured natural frequency of the bending mode of the beam
at low laser powers, the magnitude of pretension is estimated
as 50 MPa.

Note that the laser used to measure the motion of the MEMS
structure changes its tension. As the moving structure is heated
by the laser, the beam expands and the prestress reduces,
which in turn changes the stiffness of the structure. Hence, the
detection mechanism changes the property of the system that
we aspire to measure.

The parameters that need to be estimated in Eq. (4) are Q, Fs ,
�, f (T ), and g(T ). The value of the quality factor is estimated
to be Q ≈ 1400 based on experimental resonance curves. We
do not have an experimental measure of the magnitude of the
forcing, thus a value for Fs which produces a distinct resonance
curve with unstable periodic solutions is chosen, resulting in
Fs ≈ 5 × 10−5.

The cubic stiffness coefficient at T =0, i.e. �, is first estimated
by FEM simulation. In the simulation, a uniformly distributed
load is applied to the surface of the pretensioned paddle-beam
structure and the deflection calculated. The deflection 
 at the
paddle mid-point is plotted against the total load in Fig. 5.
Fitting these points to k1(
 + �′
3) gives � ≈ 0.875 (after
rescaling by �).

In Eq. (4) the functions f (T ) and g(T ) (coefficients of lin-
ear and cubic stiffness terms) must be determined. As the tem-
perature increases, the pretension in the beam reduces, chang-
ing f (T ) and g(T ). To estimate the two functions, non-linear
beam theory is used [24]. Consider the beam in Fig. 6(a). For
the sake of simplicity, we assume that the area moment of in-
ertia I, of the beam, remains constant through the length of the
beam. Using symmetry arguments, we consider only the right
half of the beam (Fig. 6(b)). We start with the Euler–Bernoulli
beam equation,

M = EI
d2Y

dX2 = SY + M0 − F(l − X), (7)

where

S = S0 + Si , (8)

S is the axial force in the beam, S0 is the pretension in the
structure and Si is the force induced by deflection, 2l is the



T. Sahai et al. / International Journal of Non-Linear Mechanics 42 (2007) 596–607 601

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

δ (μm)

F
 (

μN
)

β = 0.875

FEM
Least Squares Fit

Fig. 5. Plot of force vs. deflection (obtained using FEM simulations).
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length of the beam, F is the applied force, Y is the deflection
and X is the distance measured from the origin (Fig. 6(b)). The
general solution to Eq. (7) is,

Y = C1 sinh(rX) + C2 cosh(rX) + C3X + C4, (9)

where

r =
√

S

EI
, (10)

C3 = −F
S

and C4 = F l−M0
S

. To determine C1 and C2 we use
the boundary conditions ( dY

dX
)X=0 = 0 and ( dY

dX
)X=l = 0. This

gives us, C1 = − F
rS

tanh(rl/2) and C2 = F
rS

.

To determine M0 we use (y)X=l = 0, resulting in M0 =
F
r

tanh(rl/2). Eq. (9) can now be rewritten as

Y = F

Sr
[sinh(rX) − tanh(rl/2)(1 + cosh(rX))]

+ F

S
(l − X). (11)

At X = 0 the deflection becomes Ymax = 
, and


 = F l3

4EI
�(u), (12)

where �(u) = u−tanh(u)

u3 and u = rl/2

To determine 
 in Eq. (12), we need to determine u, which
in turn depends on r. But, from Eq. (10), we know that r is a
function of the axial force, S. To determine 
 another equation
is needed. For this consider the longitudinal elongation of the
beam. The length s of the half beam is

s =
∫ l

0

[
1 +

(
dY

dX

)2
]1/2

dX. (13)

Assuming that dY
dX

is small compared to unity,

s ≈
∫ l

0

[
1 + 1

2

(
dY

dX

)2
]

dX = l + 1

2

∫ l

0

(
dY

dX

)2

dX. (14)

The change in length of the beam is,

�l = s − l = 1

2

∫ l

0

(
dY

dX

)2

dX, (15)

thus,

Si = AE�l

l
= AE

2l

∫ l

0

(
dY

dX

)2

dX, (16)

where A is the cross-sectional area of the beam (assumed to be
constant). Substituting Eq. (11) into Eq. (16) followed by some
algebraic manipulation gives

Si(Si + S0)
2 = AEF2

2
J (u), (17)

where

J (u) =
[

3

2
− 1

2
tanh2(u) − 3

2

tanh(u)

u

]
. (18)

But we know (from Eq. (10)) that Si = EIr2 − S0, which can
be expressed as 4u2

l2
EI − S0. Thus Eq. (17) becomes

(
4u2

l2 EI − S0

) (
4u2

l2 EI

)2

= AEF2

2
J (u), (19)

which can be re-written as

F 2 = 2

AEJ(u)

(
4u2

l2 EI − S0

) (
16u4

l4 E2I 2
)

. (20)

The values of F and 
 are calculated for a range of u values
using Eqs. (20) and (12). This enables us to numerically deter-
mine the relationship between force, F, and the deflection, 
,
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at the midpoint of the beam. This procedure is repeated for a
range of pretension values S0. These different pretension values
can be related to different temperature values. Using linear
thermoelasticity,

S0 = (50 MPa − E�T )A, (21)

where � is the coefficient of linear expansion (see Table 1).
Using the framework constructed in this section we numerically
calculate points on the F vs. 
 curve for different temperature
values (see Fig. 7). A least-squares fit, using [
, 
3] as the basis
functions, is performed for each set of points (corresponding
to different temperatures). This gives us the linear and cubic
stiffnesses at different temperatures.

It is clear in Fig. 7 that curves corresponding to different
temperatures will have different coefficients of linear and cubic
stiffnesses. The linear stiffness is given by f (T ) and the cubic
stiffness is given by g(T )�. We have already estimated � from
FEM simulations. It is also clear that functions f (T ) and g(T )

should be such that f (0)= 1 and g(0)= 1. We plot the change
in the linear and cubic stiffnesses with temperature in Figs. 8
and 9. The linear stiffness is linear with respect to T, whereas
the cubic stiffness is highly non-linear. Thus we model f as
f (T ) = 1 + cT and g as g(T ) = 1 + b1T + b2T

2 + b3T
3.

Least-squares fitting approach yields c = −0.011/K, b1 =
1.37 × 10−21/K, b2 = 2 × 10−61/K2 and b3 = 2 × 10−51/K3.
The functions f (T )=1+cT and g(T )=1+b1T +b2T

2+b3T
3

are substituted into Eq. (4) to give the system of equations that
model the first translational mode of oscillation of the paddle-
beam MEMS structure,

z̈ + ż

Q
+ (1 + cT )z + (1 + b1T + b2T

2 + b3T
3)�z3

= Fs sin(�t), (22)

Ṫ = −BT + HP(� + � sin2(2�(z − z0))).

Note that the linear stiffness term (∼ z), with c < 0, is thermally
softening, while the cubic stiffness term, with �, b1, b2, b3, all
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> 0, is entirely hardening. It is the competition between these
terms that gives rise to the transitions.

A physical explanation for the trends in the stiffnesses of
the beam becomes clear once the reason for the non-linearities
is understood. Standard beam theory does not take extension
of the beam into account. If the same assumption was made
in this work, we would fail to model the softening–hardening
transitions observed experimentally. As the beam deflects trans-
versely, its length increases, which in turn increases the in-
plane stresses. The presence of the in-plane stresses requires
that we put a larger incremental force to produce a unit deflec-
tion. This is where the cubic term in our model arises from. For
high prestress the same deflection of the beam will produce a
negligible change in the in-plane stress, making the effect of
the non-linearities smaller. This is exactly what the temperature
dependence of the linear and cubic terms embodies. The tem-
perature heating due to the laser changes the initial prestress
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in the beam, which in turn determines the importance of the
non-linearities.

6. Analysis of the model

Using the values of the parameters obtained in the previ-
ous section, the numerical analysis of the system described
by Eq. (22) is discussed in this section. The primary tool
used for constructing the resonance curves of the system is
AUTO 2000 [25,26]. AUTO 2000 is a continuation program
which is primarily used for bifurcation analyses of algebraic
systems and ordinary differential equations (ODEs). It tracks
equilibrium and periodic solutions of ODEs with a changing
parameter. Our aim here is to numerically track the peri-
odic solutions of the forced system given by Eq. (22) as the
forcing frequency � is varied. Arclength continuation algo-
rithms (such as AUTO 2000) use time t as an internal variable
[25,26], hence, the user does not have access to it. So, to
compute the periodic solutions of a periodically forced system
in AUTO [27], the system of equations given by Eq. (22), is
coupled to

v̇ = v + �w − v(v2 + w2),

ẇ = −�v + w − w(v2 + w2). (23)

The oscillator given by Eq. (23) has asymptotically stable so-
lutions v = sin(�t) and w = cos(�t). The set of equations that
model the first mode of translation of the MEMS oscillator
Eq. (22) are coupled to Eq. (23) through v to give the following
set of equations:

z̈ + ż

Q
+ (1 + cT )z + (1 + b1T + b2T

2 + b3T
3)�z3 = Fsv,

Ṫ = −BT + HP(� + � sin2(2�(z − z0))),

v̇ = v + �w − v(v2 + w2),

ẇ = −�v + w − w(v2 + w2). (24)

The set of equations given by Eq. (24) are used to obtain the
amplitude–frequency response of the system given by Eq. (22).
To start continuation, an initial solution to Eq. (24) is needed.
However, we do not have a solution to the set of equations ex-
cept for the case Fs =0 (the equilibrium point can be calculated
for this case). To obtain the resonance curves we run a homo-
topy [28] from Fs = 0 to 5 × 10−5 keeping � fixed (at � = 1.5
for the reported simulations). What this entails is simply start-
ing the system at equilibrium for Fs = 0 and stepping the forc-
ing amplitude at �= 1.5 until the desired forcing amplitude of
Fs=5×10−5 is reached. Then using the solution at Fs=5×10−5

we restart continuation, but this time � is varied down from
� = 1.5 to 0.0, and in this process the amplitude–frequency
curve, at the desired forcing of Fs = 5 × 10−5, is obtained.

Using the process outlined above, the system is studied for a
range of laser power values. For P =0 the system is the standard
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Fig. 10. The classic amplitude–frequency curve for the Duffing Oscillator
(obtained at P = 0).

Duffing oscillator. The resonance curve for the system is the
classic backbone curve seen in literature [16,29] (see Fig. 10).
The curve corresponds to that of a pure hardening spring.As the
laser power is increased, the structure heats up and the thermal
coefficients of the linear and cubic stiffnesses come into play.
For P = 20 �W, Fig. 11(a), the system displays a softening re-
sponse. At P = 26 �W the system begins to display character-
istics of a softening as well as a hardening system. As the laser
power is increased even further to P = 60 �W the system dis-
plays the softening–hardening jump–drop, as it makes a transi-
tion to a hardening system. At P = 65 �W the system becomes
completely hardening just as in 2(d). The caveat, here, is that
there is mismatch between the predicted value of laser power
at which the transition occurs and the experimentally observed
value. The softening–hardening transition is predicted to occur
between P ≈ 22 �W and ≈ 55 �W. Experimentally, however,
the transition is observed at P ≈ 300 �W. Constraints from the
experimental setup prevented measurement of laser power at
the site of the MEMS structure. The measured laser power does
not account for attenuation associated with the components in
the optical path e.g. lenses and beam splitters; also the laser
beam may not be accurately centered on the paddle structure.
The coupling between higher modes of oscillation and the first
translation mode is also neglected in the model. Given these
uncertainties, we do not expect a match betweeen the predicted
and measured values of laser power at transition. The struc-
ture of the backbone curves obtained numerically (in Fig. 11)
is consistent with the experimental results (see Fig. 2). Fig. 12
plots the temperature response. The temperatures are found
to be well below the buckling temperature (110 K by Euler
buckling).

Each point on the curves in Figs. 11 and 12 corresponds to
the maximum values of z and T achieved in one cycle (for the
corresponding value of �). At any given value of � multiple
periodic solutions may exist, as seen in Figs. 11 and 12. The
periodic orbit will depend on its stability and its region of at-
traction. The points in parameter space where there is a change
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Fig. 11. Maximum deflection vs. frequency at various laser powers. Solid lines denote stable periodic orbits, dotted lines denote unstable periodic orbits, open
squares denote bifurcation points and dots denote stable invariant tori: (a) softening at low laser power (P =20 �W); (b) transition from softening (P =22 �W);
(c) transition to hardening (P = 60 �W); (d) hardening at high laser power (P = 65 �W).

in stability or the number of periodic orbits are called bifurca-
tion points. These points have been labeled in Figs. 11 and 12
by an open square. It is important to point out that in Figs. 11
and 12, while sweeping back in frequency the single stable pe-
riodic orbit (for high laser powers) loses stability at a torus bi-
furcation (labeled as TB in the figures). At this bifurcation, the
stable periodic orbit is replaced by an unstable periodic orbit
and a stable aperiodic oscillation (also known as quasiperiodic
oscillations). The quasiperiodic oscillations can be obtained by
numerical integration, for example Figs. 13 and 14. We com-
pute these stable tori by successively integrating the system of
equations at different parameter values and plot the maximum
displacement and temperature along with the continuation re-
sults (see Figs. 11 and 12). In this way we can predict the jump
and drop locations and hysteresis present in the system. These

stable aperiodic orbits will be missed experimentally since the
system responds at a combination of frequencies one of which
is the driving frequency, and the other is close to the natural fre-
quency of the linear oscillator. The spectrum analyzer detects
output in a very narrow band around the driving frequency, thus
completely missing the second frequency. These invariant tori
lose stability in Figs. 11(c), (d), 12(c) and (d). The reasons be-
hind the loss of stability of these tori will be the subject of future
investigation using methods developed in [30]. It is important
to point out that although the model does predict the transition
from softening to hardening, the exact resonant responses are
not achieved. This may be due to unmodeled dynamics, uncer-
tainties in the measured values of optical properties or material
properties taken from literature that do not exactly match the
material used.
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7. Conclusions

Although MEMS devices follow the same physical laws
governing their macroscopic counterparts, their small size can
make them susceptible to effects that are generally negligible
in macroscopic objects. This work provides one such exam-
ple. The paddle-beam oscillators would behave just like large
structural beams had it not been for the large changes in ten-
sion caused by the laser detection mechanism. The heating due
to the laser causes a counter-intuitive transition from softening
to hardening behavior of the device. In this work, we ascribe
the reason for this transition to the difference in the effect of
heating on the linear and cubic stiffnesses of the structure. The
linear stiffness makes the system thermally softening, while the

cubic stiffness makes the system thermally and mechanically
hardening. Large excursions in temperature give rise to large
changes in the stiffness terms. We see, in Fig. 12 that a cycle-
averaged increase of 60 K is entirely reasonable at high laser
powers. A 10 K change in the temperature of the structure will
cause about 10% change in pretension, which is ≈ 50 MPa at
room temperature. Hence, the temperature (determined by the
magnitude of the incident laser power) of the structure dictates
whether the thermal softening of the linear stiffness wins over
the cubic hardening or not. Since the functional dependence of
the linear stiffness term on temperature is different from the
cubic term, the temperature range determines if the overall sys-
tem behavior is softening or hardening. This mechanism is the
crux of the softening–hardening transitions. Simulations with
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Obtained by strobing the system (Eq. (22)) at t = 2n�

� (n is an integer).

the model suggest that the transitions are sensitive to the level
of prestress; this provides an example of how non-linear be-
havior in these small devices may be perturbed or turned off,
by identifying and controlling the parameters of greatest sen-
sitivity.
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