
Professor Hausi A. Müller PhD PEng FCAE

Department of Computer Science
Faculty of Engineering

University of Victoria

http://www.engr.uvic.ca/~seng321/
https://courses1.csc.uvic.ca/courses/201/spring/seng/321

Announcements
 Feb 1-5

 I will be in Los Angeles running
meetings as Vice President of
IEEE Computer Society

 Tue/Wed, Prof. Kevin Ryan
 Fri, Lorena Castaneda
 Labs: UML tutorial

 Feb 8-13
 Reading Break
 No classes
 No labs

 Deliverables
 Post your deliverables on your

web site; do not submit
electronically

 C0 due today
 Textbook Reading

Assignment
 Chapter 16—Lift controller
 Chapters 1-3 Elicitation
 Chapters 8-10 Elicitation and

Modelling
 Midterm

 Fri, Feb 26 in class
 3 mid questions today

2

SENG 321 Calendar

3

• The IEEE Computer Society (CS) annually sponsors over 200
geographically diverse technical conferences, symposiums,
and workshops dedicated to providing computing
professionals with innovative forums designed to facilitate
the identification, creation, capture and exchange of highly
peer-reviewed scientific and technological knowledge that
benefits members, the profession, and humanity.

• Prof. Hausi Müller, who serves on IEEE CS Board of
Governors, is the 2016 Vice President of Technical & Conference
Activities

4

Join IEEE as a Student Member

5

www.ieee.org/membership_services/membership/join/index.html

Next Week (Tue/Wed)
Professor Kevin Ryan
University of Limerick, Ireland

 Lero
 http://www.lero.ie/
 Director Emeritus of Irish

Software Centre (Lero)

 Research area
 Requirements engineering
 A cost-value approach for

prioritizing requirements

6

Where Do Requirements
Come From?
 Requirements come from users and

stakeholders who have demands and needs
 A requirements analyst or engineer
 Elicits demands and needs (raw requirements)
 Analyzes them for consistency, feasibility, and

completeness
 Formulates them as requirements and writes down a

specification for each requirement
 Validates that the gathered requirements reflect the

needs and demands of stakeholders:
 Yes, this is what I am looking for 
 This system will solve my problems 

7

Questions that Arise During
Requirement Gathering

 Is this a need or a requirement?
 Is this a nice-to-have vs. must-have?
 Is this the goal of the system or a contractual

requirement?
 Is this a legal requirement?
 Is this a green requirement?
 Do we have to program in Java? Why?
 Do we have to leverage certain middleware?

8

Types of Requirements
 Data/Functional:
 What is the system supposed to do?
 Mapping from input to output

 Non-functional/Quality:
 Process: time to market, standards, delivery,

modifiability, extensibility, portability, adaptability
 Product: usability, usefulness, efficiency, reliability,

availability, resiliency, self-management
 External: cost

 Context / environment:
 Range of conditions in which the system should

operate 9

Project Inception
 Reasons to start a project:
 Immediate need: Too many customers, we need a

better system to manage our customer relations
 Competitive pressure: We are losing customers

because of our current web search engine
 Bright idea: A portable mp3 player
 Seeing what others have: Web browser is pretty

useful; we should have our own. GUI on Mac vs.
Windows

 Long term nuisance: When our server crashes we
lose data not flushed to disk (Journal based file
systems); refactoring, reengineering

10

Issues to Resolve during
Project Inception
 Issues to be addressed early in a project:
 Goals: What are benefits of proposed system? Why

would someone buy it?
 Scope: What is included/excluded?
 Scope: What would the final system look like? Imagine

we are celebrating the project’s success – what would
we celebrate? How do you recognize success?

 Cost/Benefit: Will the system succeed? Can we make
money on it? Who will (tangible/intangible) benefit?

 Stakeholders: Who cares? Who is affected by system?

 Goals and Scope are the first version of the
raw requirements

11

Tangible and Intangible Benefits

 Tangible benefits
 Benefits that can be measured in terms of money

 Intangible benefits
 Subjective benefits that cannot be measured in

monetary terms

12

Stakeholder Needs, Desired
Features, System Requirements

13

Ambiguity

 The user can enter a name. It can be 127
characters:
 Must the user enter a name?
 Can the name be less than or greater than 127 chars?

 The system should prominently display a
warning message whenever a user enters
invalid data:
 What does should mean?
 What does prominently mean?
 Is invalid data defined?

[Cohn 2004]
14

Examples of Ambiguity

 Entrée comes with soup or salad and bread:
 (Soup or Salad) and Bread
 (Soup) or (Salad and Bread)

 A panda walks into a restaurant …
 Eats, shoots, and leaves
 Eats shoots, and leaves

[Cohn 2004]15

Ariane 5 Disaster
 Flight 501 (June 4, 1996) was the first, and unsuccessful, test flight of

the European Ariane 5 expendable launch system
 Due to a malfunction in the control software, the rocket veered off its flight path 37

seconds after launch and was destroyed by its self-destruct system.
 The breakup caused the loss of four Cluster mission spacecraft, resulting in a loss of

more than US$370 million.

 One of the most infamous computer bugs in history
 Ariane 5 reused the specifications from the Ariane 4, but Ariane 5's flight path was

different and beyond the range for which the reused program had been designed.
 Due to the different flight path, a data conversion from a 64-bit floating point to 16-bit

signed integer value caused an arithmetic overflow (i.e., the floating point number had
a value too large to be represented by a 16-bit signed integer).

 Efficiency considerations had led to the disabling of the exception handler (Ada code).
 This led to a cascade of problems, culminating in destruction of the entire flight.

 http://en.wikipedia.org/wiki/Ariane_5_Flight_501
16

Separation of Concerns

Problem Domain
-

Analysis

Interface
-

Specification

Solution
-

Design

Customers Designers
Requirements

Analysts

17

eDesign vs. iDesign
 External design versus internal design
 External design

 Critical part of requirements engineering
 System’s appearance
 System’s behaviour
 In other fields called styling and design

 Internal design
 Not part of requirements engineering
 Decomposing system into parts
 Architecture
 How does the system actually work
 How is the system implemented
 In other fields called engineering

18

Contents of a Requirements
Specification

Functional requirements, each interface
Record, compute, transform, transmit
Theory: F(input, state) -> (output, state)
Function list, pseudo-code, activity diagram
Screen prototype, support tasks xx to yy

System

Platform
HW, OS, DB, UI
Spreadsheet, web

Ext. products
Sensors, devices
Special SW, COTS

User
groups

Quality requirements
Performance
Usability
Maintainability …

Other deliverables
Documentation
Install, convert,
train …

Managerial requirements
Delivery time
Legal
Development
process …

Helping the reader
Business goals
Definitions
Diagrams …

Interfaces

Data requirements
System state: Database, files, communication
states, input/output formats

19

Problem Data vs. Solution Data
 Problem data
 Originate in the problem domain
 Stored and transformed by the solution system
 Subject to requirements analysis
 Should be fully defined in requirements documents

 Solution data
 Originate in the solution domain
 Input and output to drive the solution
 Intermediate data

20

Software Requirements
and Specifications

Problem Domain/Environment Solution Domain/System
S: Specifications

P: Program

M: Machine

D: Domain Knowledge

R: Requirements

• D: Relevant Facts about the environment that are
assumed true whether or not we ever build the system
• R: Things that we wish to be made true by delivering the
proposed system
• S: A description of the behaviours the program must have
in order to meet these requirements R 21

Relevant Facts about the
Environment
 If assumption of truth does not work then system will fail
 Write everything that is relevant even “obvious” facts that

may change
 The system will behave as desired only if these

assumptions are not violated
 No concurrent updates, at most 100 users

 Raw requirements
 Exist outside of the system you are building.
 Have nothing to do with data structures, algorithms, GUIs, 32 bit

ints, databases, or any other internal part of the system (except
shared phenomena).

22

System Failures
 System will behave as desired only if assumptions

about the environment are not violated:
 What if customers share PINs?
 What if plane skids on runway? Wheels would not turn...
 What if users jump over the turnstile?

23

Example 1
Account Access
 Environment
 Domain Knowledge: Customers have PINs, PINs are

not shared
 Requirement: Account accessed only by authorized

person
 System
 Program: Internal security and encryption algorithms
 Machine: Keypad and screen provided

 Specification
 Users must input the correct PIN to gain access to an

account
24

Example 2
Avionics Software
 Environment

 Domain Knowledge: wheel pulses on iff wheel is turning, wheel is
turning iff plane is on runway

 Requirement: Reverse thrust only enabled when the aircraft is
moving on the runway

 System
 Program: Internal algorithms and data structures to monitor and

analyze the wheel pulses data
 Machine: Wheel pulses, Reverse thrust mechanism

 Specification
 Reverse thrust enabled iff wheel pulses is on

 Problem
 Airplane “aquaplaned” on the runway one wet day.
 The wheels didn’t turn, so there were no pulses, so the avionics

systems didn’t let the reverse thrust engage.
25

Example 3
Park Entrance Software

 Environment
 Domain Knowledge: User must pass through single

entrance to enter park
 Requirement: User must pay to get into the park

 System
 Program: Internal algorithms and data structures to

monitor the coin drop and move turnstile arm
 Machine: coin slot, turnstile arm

 Specification
 Turnstile arm moves once coin is put in slot

26

Example 4
Heart Monitoring System
 Environment
 Domain Knowledge: Patient’s heart beat, Nurse keep

an eye on patient. Heart stopping is a concern
 Requirement: Nurse must be informed if heart stops

 System
 Program: Internal monitoring algorithms and data

structures
 Machine: Sensor to monitor heart beat, buzzer to

warn nurse
 Specification
 System must monitor heart through sensors and alert

nurse through buzzer if heart stops

27

Requirements: What vs. How?
 Requirements do not specify How!
 What: Account accessed only by authorized person
 How: PIN, password, retina scan, fingerprint

 What: Reverse thrust only enabled when the
aircraft is moving on the runway
 How: Altitude measure, wheel pulses, pilot control

 What: User must pay to get into the park
 How: Manned booth, coin/card-operated turnstile

 What: Nurse must be informed if heart stops
 How: audible, visual, buzzer

28

Requirements: What vs. How?
 Requirements do not specify How!

29

Key Findings from Last Lecture
 During requirements elicitation and analysis carefully

separate the following concerns
 eDesign and iDesign
 Problem data and solution data
 What and How

 Requirements do not specify How
 Always ask Why instead of When or How?
 Do not restrict design with unnecessary requirements 

unwanted solutions
 For a functional requirement, describe the requirement but

not how it is done
 Requirement types: functional and non-functional 30

Always Ask Why?!
 Ask “Why” instead of “When or how would you do

that”?
 Ignorance of the domain is usually preferred
 The designated ignoramus usually asks questions

whose answers are “obvious” to experts, but often
expose hidden knowledge that might otherwise not be
modeled explicitly.

31

Professor Dan Berry, Waterloo suggests that one
day, requirements engineers will advertise their areas

of ignorance (rather than expertise) to get jobs 

Neural diagnostics
System shall have mini keyboard with start/stop button, . . .

Why?

Possible to operate it with “left hand”.

Why?

Both hands must be at the patient.

Why?

Electrodes, bandages, painful . . .

From: Soren Lauesen: Software Requirements
© Addison-Wesley 2002

Ask Why

32

Measuring neural response is a bit painful to the
patient. Electrodes must be kept in place . . .
So both hands should be at the patient during a
measurement.

R1: It shall be possible to perform the commands
start, stop, . . .
. . . with both hands at the patient.

Might be done with mini keyboard (wrist keys), foot
pedal, voice recognition, etc.

Domain
- why

Requirements

Example
- how

From: Soren Lauesen: Software Requirements
© Addison-Wesley 2002

Recommendation: Why & How

33

Do Not Constrain Range of Solutions with
Unnecessary Design Requirements

 Requirements with unnecessary design can restrict the
range of solutions or result in bad solutions.

 Example:
 Need capability to drink hot liquids and analyst writes:

 The thing shall contain up to 8 ounces of hot liquid.
 The thing shall have a handle.

 In response to a requirements quality review analyst writes:
 The thing shall allow a person to hold it without getting burned.

 This requirement allowed multiple solutions including
 a cup with handle, carton sleeve, a Styrofoam cup, or a thermos mug

34

