
2/1/2016

1

Professor Hausi A. Müller PhD PEng FCAE

Department of Computer Science
Faculty of Engineering

University of Victoria

http://www.engr.uvic.ca/~seng321/
https://courses1.csc.uvic.ca/courses/201/spring/seng/321

Announcements
 Feb 1-5

 I will be in Los Angeles running
meetings as Vice President of
IEEE Computer Society

 Tue/Wed, Prof. Kevin Ryan

 Fri, Lorena Castaneda

 Labs: UML tutorial

 Feb 8-13
 Reading Break

 No classes

 No labs

 Deliverables
 Post your deliverables on your

web site; do not submit
electronically

 C0 due today

 Textbook Reading
Assignment
 Chapter 16—Lift controller
 Chapters 1-3 Elicitation
 Chapters 8-10 Elicitation and

Modelling

 Midterm
 Fri, Feb 26 in class

 3 mid questions today
2

SENG 321 Calendar

3

• The IEEE Computer Society (CS) annually sponsors over 200
geographically diverse technical conferences, symposiums,
and workshops dedicated to providing computing
professionals with innovative forums designed to facilitate
the identification, creation, capture and exchange of highly
peer-reviewed scientific and technological knowledge that
benefits members, the profession, and humanity.

• Prof. Hausi Müller, who serves on IEEE CS Board of
Governors, is the 2016 Vice President of Technical & Conference
Activities

4

Join IEEE as a Student Member

5

www.ieee.org/membership_services/membership/join/index.html

Next Week (Tue/Wed)

Professor Kevin Ryan
University of Limerick, Ireland

 Lero
 http://www.lero.ie/
 Director Emeritus of Irish

Software Centre (Lero)

 Research area
 Requirements engineering
 A cost-value approach for

prioritizing requirements

6

2/1/2016

2

Where Do Requirements
Come From?

 Requirements come from users and
stakeholders who have demands and needs

 A requirements analyst or engineer
 Elicits demands and needs (raw requirements)
 Analyzes them for consistency, feasibility, and

completeness
 Formulates them as requirements and writes down a

specification for each requirement
 Validates that the gathered requirements reflect the

needs and demands of stakeholders:
 Yes, this is what I am looking for
 This system will solve my problems

7

Questions that Arise During
Requirement Gathering

 Is this a need or a requirement?

 Is this a nice-to-have vs. must-have?

 Is this the goal of the system or a contractual
requirement?

 Is this a legal requirement?

 Is this a green requirement?

 Do we have to program in Java? Why?

 Do we have to leverage certain middleware?

8

Types of Requirements

 Data/Functional:
 What is the system supposed to do?
 Mapping from input to output

 Non-functional/Quality:
 Process: time to market, standards, delivery,

modifiability, extensibility, portability, adaptability
 Product: usability, usefulness, efficiency, reliability,

availability, resiliency, self-management
 External: cost

 Context / environment:
 Range of conditions in which the system should

operate 9

Project Inception

 Reasons to start a project:
 Immediate need: Too many customers, we need a

better system to manage our customer relations
 Competitive pressure: We are losing customers

because of our current web search engine
 Bright idea: A portable mp3 player
 Seeing what others have: Web browser is pretty

useful; we should have our own. GUI on Mac vs.
Windows

 Long term nuisance: When our server crashes we
lose data not flushed to disk (Journal based file
systems); refactoring, reengineering

10

Issues to Resolve during
Project Inception

 Issues to be addressed early in a project:
 Goals: What are benefits of proposed system? Why

would someone buy it?
 Scope: What is included/excluded?
 Scope: What would the final system look like? Imagine

we are celebrating the project’s success – what would
we celebrate? How do you recognize success?

 Cost/Benefit: Will the system succeed? Can we make
money on it? Who will (tangible/intangible) benefit?

 Stakeholders: Who cares? Who is affected by system?

 Goals and Scope are the first version of the
raw requirements

11

Tangible and Intangible Benefits

 Tangible benefits
 Benefits that can be measured in terms of money

 Intangible benefits
 Subjective benefits that cannot be measured in

monetary terms

12

2/1/2016

3

Stakeholder Needs, Desired
Features, System Requirements

13

Ambiguity

 The user can enter a name. It can be 127
characters:
 Must the user enter a name?

 Can the name be less than or greater than 127 chars?

 The system should prominently display a
warning message whenever a user enters
invalid data:
 What does should mean?

 What does prominently mean?

 Is invalid data defined?

[Cohn 2004]
14

Examples of Ambiguity

 Entrée comes with soup or salad and bread:
 (Soup or Salad) and Bread

 (Soup) or (Salad and Bread)

 A panda walks into a restaurant …
 Eats, shoots, and leaves

 Eats shoots, and leaves

[Cohn 2004]15

Ariane 5 Disaster

 Flight 501 (June 4, 1996) was the first, and unsuccessful, test flight of
the European Ariane 5 expendable launch system
 Due to a malfunction in the control software, the rocket veered off its flight path 37

seconds after launch and was destroyed by its self-destruct system.

 The breakup caused the loss of four Cluster mission spacecraft, resulting in a loss of
more than US$370 million.

 One of the most infamous computer bugs in history
 Ariane 5 reused the specifications from the Ariane 4, but Ariane 5's flight path was

different and beyond the range for which the reused program had been designed.

 Due to the different flight path, a data conversion from a 64-bit floating point to 16-bit
signed integer value caused an arithmetic overflow (i.e., the floating point number had
a value too large to be represented by a 16-bit signed integer).

 Efficiency considerations had led to the disabling of the exception handler (Ada code).

 This led to a cascade of problems, culminating in destruction of the entire flight.

 http://en.wikipedia.org/wiki/Ariane_5_Flight_501

16

Separation of Concerns

Problem Domain
-

Analysis

Interface
-

Specification

Solution
-

Design

Customers Designers
Requirements

Analysts

17

eDesign vs. iDesign

 External design versus internal design

 External design
 Critical part of requirements engineering

 System’s appearance

 System’s behaviour

 In other fields called styling and design

 Internal design
 Not part of requirements engineering

 Decomposing system into parts

 Architecture

 How does the system actually work

 How is the system implemented

 In other fields called engineering

18

2/1/2016

4

Contents of a Requirements
Specification

Functional requirements, each interface
Record, compute, transform, transmit
Theory: F(input, state) -> (output, state)
Function list, pseudo-code, activity diagram
Screen prototype, support tasks xx to yy

System

Platform
HW, OS, DB, UI
Spreadsheet, web

Ext. products
Sensors, devices
Special SW, COTS

User
groups

Quality requirements
Performance
Usability
Maintainability …

Other deliverables
Documentation
Install, convert,
train …

Managerial requirements
Delivery time
Legal
Development
process …

Helping the reader
Business goals
Definitions
Diagrams …

Interfaces

Data requirements
System state: Database, files, communication
states, input/output formats

19

Problem Data vs. Solution Data

 Problem data
 Originate in the problem domain

 Stored and transformed by the solution system

 Subject to requirements analysis

 Should be fully defined in requirements documents

 Solution data
 Originate in the solution domain

 Input and output to drive the solution

 Intermediate data
20

Software Requirements
and Specifications

Problem Domain/Environment Solution Domain/System
S: Specifications

P: Program

M: Machine

D: Domain Knowledge

R: Requirements

• D: Relevant Facts about the environment that are
assumed true whether or not we ever build the system
• R: Things that we wish to be made true by delivering the
proposed system
• S: A description of the behaviours the program must have
in order to meet these requirements R 21

Relevant Facts about the
Environment

 If assumption of truth does not work then system will fail

 Write everything that is relevant even “obvious” facts that
may change

 The system will behave as desired only if these
assumptions are not violated
 No concurrent updates, at most 100 users

 Raw requirements
 Exist outside of the system you are building.

 Have nothing to do with data structures, algorithms, GUIs, 32 bit
ints, databases, or any other internal part of the system (except
shared phenomena).

22

System Failures

 System will behave as desired only if assumptions
about the environment are not violated:
 What if customers share PINs?

 What if plane skids on runway? Wheels would not turn...

 What if users jump over the turnstile?

23

Example 1
Account Access

 Environment
 Domain Knowledge: Customers have PINs, PINs are

not shared
 Requirement: Account accessed only by authorized

person

 System
 Program: Internal security and encryption algorithms
 Machine: Keypad and screen provided

 Specification
 Users must input the correct PIN to gain access to an

account
24

2/1/2016

5

Example 2
Avionics Software

 Environment
 Domain Knowledge: wheel pulses on iff wheel is turning, wheel is

turning iff plane is on runway
 Requirement: Reverse thrust only enabled when the aircraft is

moving on the runway

 System
 Program: Internal algorithms and data structures to monitor and

analyze the wheel pulses data
 Machine: Wheel pulses, Reverse thrust mechanism

 Specification
 Reverse thrust enabled iff wheel pulses is on

 Problem
 Airplane “aquaplaned” on the runway one wet day.

 The wheels didn’t turn, so there were no pulses, so the avionics
systems didn’t let the reverse thrust engage.

25

Example 3
Park Entrance Software

 Environment
 Domain Knowledge: User must pass through single

entrance to enter park

 Requirement: User must pay to get into the park

 System
 Program: Internal algorithms and data structures to

monitor the coin drop and move turnstile arm

 Machine: coin slot, turnstile arm

 Specification
 Turnstile arm moves once coin is put in slot

26

Example 4
Heart Monitoring System

 Environment
 Domain Knowledge: Patient’s heart beat, Nurse keep

an eye on patient. Heart stopping is a concern
 Requirement: Nurse must be informed if heart stops

 System
 Program: Internal monitoring algorithms and data

structures
 Machine: Sensor to monitor heart beat, buzzer to

warn nurse
 Specification
 System must monitor heart through sensors and alert

nurse through buzzer if heart stops

27

Requirements: What vs. How?

 Requirements do not specify How!
 What: Account accessed only by authorized person
 How: PIN, password, retina scan, fingerprint

 What: Reverse thrust only enabled when the
aircraft is moving on the runway
 How: Altitude measure, wheel pulses, pilot control

 What: User must pay to get into the park
 How: Manned booth, coin/card-operated turnstile

 What: Nurse must be informed if heart stops
 How: audible, visual, buzzer

28

Requirements: What vs. How?

 Requirements do not specify How!

29

Key Findings from Last Lecture

 During requirements elicitation and analysis carefully
separate the following concerns
 eDesign and iDesign

 Problem data and solution data

 What and How

 Requirements do not specify How

 Always ask Why instead of When or How?

 Do not restrict design with unnecessary requirements
unwanted solutions

 For a functional requirement, describe the requirement but
not how it is done

 Requirement types: functional and non-functional 30

2/1/2016

6

Always Ask Why?!

 Ask “Why” instead of “When or how would you do
that”?

 Ignorance of the domain is usually preferred
 The designated ignoramus usually asks questions

whose answers are “obvious” to experts, but often
expose hidden knowledge that might otherwise not be
modeled explicitly.

31

Professor Dan Berry, Waterloo suggests that one
day, requirements engineers will advertise their areas

of ignorance (rather than expertise) to get jobs

Neural diagnostics

System shall have mini keyboard with start/stop button, . . .

Why?

Possible to operate it with “left hand”.

Why?

Both hands must be at the patient.

Why?

Electrodes, bandages, painful . . .

From: Soren Lauesen: Software Requirements
© Addison-Wesley 2002

Ask Why

32

Measuring neural response is a bit painful to the
patient. Electrodes must be kept in place . . .
So both hands should be at the patient during a
measurement.

R1: It shall be possible to perform the commands
start, stop, . . .
. . . with both hands at the patient.

Might be done with mini keyboard (wrist keys), foot
pedal, voice recognition, etc.

Domain
- why

Requirements

Example
- how

From: Soren Lauesen: Software Requirements
© Addison-Wesley 2002

Recommendation: Why & How

33

Do Not Constrain Range of Solutions with
Unnecessary Design Requirements

 Requirements with unnecessary design can restrict the
range of solutions or result in bad solutions.

 Example:
 Need capability to drink hot liquids and analyst writes:

 The thing shall contain up to 8 ounces of hot liquid.

 The thing shall have a handle.

 In response to a requirements quality review analyst writes:
 The thing shall allow a person to hold it without getting burned.

 This requirement allowed multiple solutions including
 a cup with handle, carton sleeve, a Styrofoam cup, or a thermos mug

34

