
f e a t u r e

I E E E S O F T W A R E 0 7 4 0 - 7 4 5 9 / 9 7 / $ 1 0 . 0 0 © 1 9 9 7 I E E E 6 7

A Cost–Value
Approach for
Prioritizing
Requirements

JOACHIM KARLSSON
Focal Point AB

KEVIN RYAN
University of Limerick

eveloping software systems that meet stakeholders’
needs and expectations is the ultimate goal of any soft-
ware provider seeking a competitive edge. To achieve
this, you must effectively and accurately manage your
stakeholders’ system requirements: the features, func-
tions, and attributes they need in their software sys-

tem.1 Once you agree on these requirements, you can use them as a focal
point for the development process and produce a software system that
meets the expectations of both customers and users. However, in real-
world software development, there are usually more requirements than
you can implement given stakeholders’ time and resource constraints.
Thus, project managers face a dilemma: How do you select a subset of the
customers’ requirements and still produce a system that meets their needs?

Deciding which requirements
really matter is a difficult task

and one increasingly
demanded because of time
and budget constraints. The

authors developed a
cost–value approach for

prioritizing requirements and
applied it to two

commercial projects.

D

.

6 8 S E P T E M B E R / O C T O B E R 1 9 9 7

.

Most software organizations carry out
this selection process informally, and quite
frequently produce software systems that
developers, customers, and users view as
suboptimal. Without techniques to make
these crucial choices, this outcome is
hardly surprising. Indeed, despite the re-
cent rapid and welcome growth in re-
quirements engineering research, man-
agers still don’t have simple, effective, and
industrially proven techniques for priori-
tizing requirements. A recent survey2

shows that few companies know how to
establish and communicate requirements
priorities; another3 identified prioritiza-
tion as a key but neglected issue in re-
quirements engineering research.

Clear, unambiguous knowledge about
requirement priorities helps you focus
the development process and more ef-
fectively and efficiently manage projects.
It can also help you

♦ make acceptable tradeoffs among
sometimes conflicting goals such as qual-
ity, cost, and time-to-market;4 and

♦ allocate resources based on the re-
quirement’s importance to the project as
a whole.

Finally, when time-to-market is par-
ticularly important, knowing how to rank
your requirements can help you plan re-
leases by indicating which functions are
critical and which can be added (and in
what order) over successive releases.

We have developed an analytical tool

for prioritizing requirements based on a
cost–value approach. This tool can help
you rank candidate requirements in two
dimensions: according to their value to
customer and users, and according to
their estimated cost of implementation.
Our method has been successfully ap-
plied in two commercial telecommuni-
cations software development projects.

A COST–VALUE APPROACH

A process for prioritizing software re-
quirements must, on one hand, be simple
and fast, and, on the other, yield accurate
and trustworthy results. If both of these
conditions are not met, the process is un-
likely to be used in commercial software
systems development. The prioritizing
process also must hold stakeholder satis-
faction as both the ultimate goal and the
guiding theme. Shoji Shiba and his col-
leagues argue that there are three main fac-
tors in stakeholder satisfaction: quality,
cost, and delivery.5 For a software system
to succeed, quality must be maximized,
cost minimized, and time-to-delivery be
as short as possible. Our cost-value ap-
proach prioritizes requirements according
to their relative value and cost. Based on
this information, software managers can
make decisions such as which require-
ments to be excluded from the first release
to keep the time-to-market at minimum.

We interpret quality in relation to a
candidate requirement’s potential con-
tribution to customer satisfaction with
the resulting system. Cost is the cost of
successfully implementing the candidate
requirement. In practice, software de-
velopers often calculate costs purely in
terms of money. However, we found that
prioritizing based on relative rather than
absolute assignments is faster, more ac-
curate, and more trustworthy.6

Why pairwise? To investigate candidate
requirements, we use the Analytic Hier-
archy Process,7 which compares re-
quirements pairwise according to their
relative value and cost. The pairwise
comparison approach includes much re-
dundancy and is thus less sensitive to
judgmental errors common to tech-
niques using absolute assignments. The
AHP actually indicates inconsistencies
by calculating a consistency ratio of judg-
mental errors. The smaller the consis-
tency ratio, the fewer the inconsistencies,
and thus the more reliable the results.
The box “The Analytic Hierarchy
Process” on page 69 describes the AHP
in more detail.

Process. There are five steps to prior-
itizing requirements using the cost–value
approach.

1. Requirements engineers carefully
review candidate requirements for com-
pleteness and to ensure that they are
stated in an unambiguous way.

2. Customers and users (or suitable
substitutes) apply AHP’s pairwise com-
parison method to assess the relative
value of the candidate requirements.

3. Experienced software engineers use
AHP’s pairwise comparison to estimate the
relative cost of implementing each candi-
date requirement.

4. A software engineer uses AHP to
calculate each candidate requirement’s
relative value and implementation cost,
and plots these on a cost–value diagram.
As Figure 1 shows, value is depicted on
the y axis and estimated cost on the x axis.

5. The stakeholders use the cost–
value diagram as a conceptual map for
analyzing and discussing the candidate

5 15

Va
lu

e
(p

er
ce

nt
)

25

20

15

10

5

0
0 10 20 25

Cost (percent)

High

Medium

Low

Figure 1. Using AHP, you can calculate each candidate requirement’s relative value and
implementation cost and plot them on a cost-value diagram, such as the one shown here.

I E E E S O FT W A R E 6 9

.

To make decisions, you identify, analyze, and make trade-
offs between different alternatives to achieve an objective.
The more efficient the means for analyzing and evaluating
the alternatives, the more likely you’ll be satisfied with the
outcome. To help you make decisions, the Analytic Hierachy
Process compares alternatives in a stepwise fashion and mea-
sures their contribution to your objective.1

AHP in action. Using AHP for decision making involves
four steps. We’ll assume here that you want to evaluate can-
didate requirements using the criterion of value.

Step 1. Set up the n requirements in the rows and columns of an
n × n matrix. We’ll assume here that you have four candidate
requirements: Req1, Req2, Req3, and Req4, and you want to
know their relative value. Insert the n requirements into the
rows and columns of a matrix of order n (in this case we have
a 4 × 4 matrix).

Step 2. Perform pairwise comparisons of all the requirements
according to the criterion. The fundamental scale used for this
purpose is shown in Table A.1 For each pair of requirements
(starting with Req1 and Req2, for example) insert their
determined relative intensity of value in the position (Req1,
Req2) where the row of Req1 meets the column of Req2. In
position (Req2, Req1) insert the reciprocal value, and in all
positions in the main diagonal insert a “1.” Continue to per-
form pairwise comparisons of Req1–Req3, Req1–Req4,
Req2–Req3, and so on. For a matrix of order n,
comparisons are required. Thus, in this example, six pairwise
comparisons are required; they might look like this:

Req1 Req2 Req3 Req4
Req1 1 1/3 2 4
Req2 3 1 5 3
Req3 1/2 1/5 1 1/3
Req4 1/4 1/3 3 1

Step 3. Use averaging over normalized columns to estimate the
eigenvalues of the matrix (which represent the criterion distri-
bution). Thomas Saaty proposes a simple method for this,
known as averaging over normalized columns.1 First, calcu-
late the sum of the n columns in the comparison matrix.
Next, divide each element in the matrix by the sum of the
column the element is a member of, and calculate the sums
of each row:

Req1 Req2 Req3 Req4 Sum
Req1 0.21 0.18 0.18 0.48 1.05
Req2 0.63 0.54 0.45 0.36 1.98
Req3 0.11 0.11 0.09 0.04 0.34
Req4 0.05 0.18 0.27 0.12 0.62

Then normalize the sum of the rows (divide each row
sum with the number of requirements). The result of this
computation is referred to as the priority matrix and is an esti-
mation of the eigenvalues of the matrix.

Step 4. Assign each requirement its relative value based on the
estimated eigenvalues. From the resulting eigenvalues of the
comparison matrix, the following information can be
extracted:

♦ Req1 contains 26 percent of the requirements’ total
value,

♦ Req2 contains 50 percent,
♦ Req3 contains 9 percent, and
♦ Req4 contains 16 percent.

Result consistency. If we were able to determine precisely
the relative value of all requirements, the eigenvalues would
be perfectly consistent. For instance, if we determine that
Req1 is much more valuable than Req2, Req2 is somewhat
more valuable than Req3, and Req3 is slightly more valuable
than Req1, an inconsistency has occurred and the result’s
accuracy is decreased. The redundancy of the pairwise com-
parisons makes the AHP much less sensitive to judgment
errors; it also lets you measure judgment errors by calcu-
lating the consistency index of the comparison matrix, and
then calculating the consistency ratio.

Consistency index. The consistency index (CI) is a first indi-
cator of result accuracy of the pairwise comparisons. You cal-
culate it as . denotes the
maximum principal eigenvalue of the comparison matrix.
The closer the value of is to n (the number of
requirements), the smaller the judgmental errors and thus
the more consistent the result. To estimate , you first
multiply the comparison matrix by the priority vector:

Then you divide the first element of the resulting vector by
the first element in the priority vector, the second element of
the resulting vector by the second element in the priority
vector, and so on:

1 22 0 26
2 18 0 50
0 37 0 09
0 64 0 16

4 66
4 40
4 29
4 13

. / .
. / .
. / .
. / .

.

.

.

.

=

1
4

1 05
1 98
0 34
0 62

0 26
0 50
0 09
0 16

⋅

=

.

.
.
.

.

.

.

.

 n n⋅ −() /1 2

 λmax

 λmax

 λmax
 CI n n= −() −()λmax / 1

THE ANALYTIC HIERARCHY PROCESS

1 1 3 2 4
3 1 5 3

1 2 1 5 1 1 3
1 4 1 3 3 1

0 26
0 50
0 09
0 16

1 22
2 18
0 37
0 64

/

/ / /
/ /

.

.

.

.

.
.
.
.

⋅

=

7 0 S E P T E M B E R / O C T O B E R 1 9 9 7

.

To calculate , average over the elements in the resulting vector:

Now the consistency index can be calculated:

To find out if the resulting consistency index (CI = 0.12) is acceptable, you must calculate the consistency ratio.

Consistency ratio. The consistency indices of randomly generated reciprocal matrices from the scale 1 to 9 are called the ran-
dom indices, RI.1 The ratio of CI to RI for the same-order matrix is called the consistency ratio (CR), which defines the accu-
racy of the pairwise comparisons. The RI for matrices of order n are given below. The first row shows the order of the matrix,
and the second the corresponding RI value.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

According to Table A, the RI for matrices of order 4 is 0.90. Thus, the consistency ratio for our example is

.

As a general rule, a consistency ratio of 0.10 or less is considered acceptable.1 This means that our result here is less than
ideal. In practice, however, consistency ratios exceeding 0.10 occur frequently.

REFERENCES
1. T.L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New York, 1980.

CR CI

RI
= = =

0 12
0 90

0 14.
.

.

CI

n
n

=
−

−
=

−

−
=

λmax .
.

1
4 37 4

4 1
0 12

λmax

. . . .
.=

+ + +
=

4 66 4 40 4 29 4 13
4

4 37

TABLE A
SCALE FOR PAIRWISE COMPARISONS

Relative
intensity Definition Explanation
1 Of equal value Two requirements are of equal value

3 Slightly more value Experience slightly favors one requirement over another

5 Essential or strong value Experience strongly favors one requirement over another

7 Very strong value A requirement is strongly favored and its dominance is
demonstrated in practice

9 Extreme value The evidence favoring one over another is of the highest
possible order of affirmation

2, 4, 6, 8 Intermediate values between two
adjacent judgments When compromise is needed

Reciprocals If requirement i has one of the above numbers assigned to it when compared with requirement j,
then j has the reciprocal value when compared with i.

 λmax

I E E E S O FT W A R E 7 1

.

requirements. Based on this discussion,
software managers prioritize the re-
quirements and decide which will actu-
ally be implemented. They can also use
the information to develop strategies for
release planning.

CASE STUDY 1:
THE RAN PROJECT

Since 1992, Ericsson Radio Systems
AB and the Department of Computer
and Information Science at Linköping
University have been involved in a joint
research program to identify, apply, and
evaluate ways to improve the early phases
of the software engineering process. As
part of this collaboration, in January
1994 we were invited in to use the in-
dustry-as-laboratory approach,8 per-
forming in-depth case studies in an in-
dustrial environment. For the first study,
we selected Ericsson’s Radio Access
Network project.

The goal of the RAN project was to
identify and specify requirements for a
system that would give managers infor-
mation about mobile telephony system
operation.9 The project started small,
with a staff of five, but as a result of our
study it grew considerably and is now an
umbrella for a portfolio of both research
and development projects.

First steps. We identified 14 high-level
requirements (services) that covered the
main system functionality. These high-
level requirements were intended to give
managers information about issues such
as capacity, coverage, and quality in a mo-
bile communications system. Once we’d
defined the 14 requirements, the project
members reviewed and agreed on them.
The prioritizing technique in use at that
time was to rank-order the requirements
on an ordinal scale ranging from 1 to 3,
where 1 denotes highest priority. In prac-
tice, the requirements belonging to cat-
egory 1 were then implemented and the
rest discarded or postponed to future re-
leases. Because we’d used this technique
before and found it far from optimal,6 we
decided to prioritize RAN requirements

using the cost–value approach.
We asked a group of experienced pro-

ject members to represent customers’
views and carefully instructed them on
prioritizing requirements, making pair-
wise comparisons, choosing the scale to
be used, and deciding how many com-
parisons would be needed. We also ex-
plained the importance of carrying out
the pairwise comparisons carefully.

To begin, the project manager ex-
plained each candidate requirement and
discussed it with project participants. He
did this to make the requirements more
clear and reduce subsequent misinter-
pretations. We distributed sheets outlin-
ing the 91 unique pairs of requirements,
including the fundamental scale (as
shown in Table A in “The Analytic
Hierarchy Process” on page 70). Parti-
cipants then performed pairwise com-
parisons of the candidate requirements,
first according to value and later, in a sep-
arate session, according to the estimated

implementation cost.
We let the participants work with the

requirement pairs in any order they chose,
allowing for retraction during the com-
parison process. The session was not
moderated and participants worked at
their own pace. Discussions were allowed,
though in fact there were very few.
Completing the cost–value approach took
about an hour. When all 14 requirements
had been pairwise compared, we calcu-
lated the value distribution and the cost
distribution, as well as the consistency in-
dices and ratios of the pairwise compar-
isons. There were some judgmental er-
rors, since the consistency ratios for both
value and cost were computed as 0.18.
Based on the resulting distributions, we
outlined the candidate requirements in a
cost–value diagram and presented the re-
sults to the project members.

Requirements’ value. Each requirement’s
determined value is relative and based on

Requirement

Co
st

(p
er

ce
nt

) 20

15

10

5

0
1% 2% 3% 4%

6%

11%

4%
6% 7%

12%

4%
6%

23%

10%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 3. Estimated cost of requirements implementation in the RAN project.
Requirements 6, 10, 13, and 14 constitute 56 percent of the total implementation costs.

Requirement

Va
lu

e
(p

er
ce

nt
)

20

15

10

5

0

12%

6% 5%
7%

12%

16%

3% 3% 4% 5%

1% 1%

21%

3%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 2. The value distribution of the 14 requirements in the RAN project.

7 2 S E P T E M B E R / O C T O B E R 1 9 9 7

.

a ratio scale. This means that a require-
ment whose determined value is 0.10 is
twice as valuable as a requirement with a
determined value of 0.05. Moreover, the
sum of all requirements value measures is
always 1. Thus, a requirement with a de-
termined value of 0.10 represents 10 per-
cent of the total value of the requirements
set. Figure 2 shows the value distribution
of the 14 requirements in the RAN pro-
ject. As the figure shows, the value of in-
dividual requirements can vary by orders
of magnitude. The four most valuable re-
quirements—1, 5, 6, and 13—constitute
61 percent of the total value; the four least
valuable requirements—7, 8, 11, and 12—
contribute a mere 8 percent. At the ex-
tremes, requirement 13 is about 20 times
as valuable as requirement number 11.

Requirements’ cost. A requirement’s es-
timated cost is also relative and based on
a ratio scale; the sum of all costs is again
1. Figure 3 shows the estimated cost of
RAN’s 14 requirements, which can again
vary by orders of magnitude. The four
most expensive requirements—6, 10, 13,
and 14—constitute 56 percent of the
total cost; the four least expensive re-

quirements—1, 2, 3, and 11—account
for only 10 percent. Looking again at the
extreme values, requirement number 13
is about 20 times as expensive to imple-
ment as requirement number 1.

Requirements cost–value analysis. Figure
4 shows the cost–value diagram of the 14
requirements. For discussion purposes,
we divide cost–value diagrams into three
distinct areas:

♦ requirements with a high ratio of
value to cost (a value–cost ratio exceed-
ing 2),

♦ requirements with medium ratio of
value to cost (a value–cost ratio between
0.5 and 2), and

♦ requirements with a low ratio of
value to cost (a value–cost ratio lower
than 0.5).
As such, we infer that requirements 1, 2,
and 5 fall into the high ratio category; re-
quirements 3, 4, 6, 7, and 13 into the
medium ratio category; and require-
ments 8, 9, 10, 11, 12, and 14 into the low
ratio category. Based on these categories,
the software managers were able to ef-
fectively and accurately prioritize their
requirements.

The cost–value diagram clearly facil-
itates requirements selection. If, hypo-
thetically, you chose to implement all re-
quirements except numbers 10, 11, and
12, the software system’s value for its cus-
tomers would be 94 percent of the pos-
sible maximum, while the cost would be
reduced to 78 percent of the cost for im-
plementing all requirements. In general,
by not implementing the requirements
that contribute little to stakeholder sat-
isfaction, you can significantly reduce the
cost and duration of development.

CASE STUDY 2:
THE PMR PROJECT

Encouraged by the apparent usefulness
and effectiveness of the cost–value ap-
proach in the RAN project, we undertook
a second case study. We picked a project
that was developing a fourth release: the
Performance Management Traffic Re-
cording project. PMR is a software sys-
tem that enables recording and analysis of
mobile telecommunications traffic. The
project began in 1992 with a full-time staff
of 15 people, and has delivered 10 releases
of varying sizes thus far.

At the time we joined the project, the
system’s third release was installed and
running at customer sites. Many new re-
quirements had emerged that had to be
taken into account in planning the next
release. We divided these new require-
ments into three categories: those de-
manding traditional defect correction,
those requiring performance enhance-
ment, and those suggesting added func-
tionality. We decided to prioritize only
the last category because both the pro-
ject managers and the customers agreed
that all defects had to be corrected and
performance had to be enhanced. How-
ever, the exact functions to be added
were up for negotiation.

The 11 high-level functional require-
ments dealt with issues such as presenta-
tion, sorting, and structuring new types
of information. To prioritize these re-
quirements each project member had to
complete 55 pairwise comparisons for
each criterion using the cost–value ap-

5 15

Va
lu

e
(p

er
ce

nt
)

25

20

15

10

5

0

0 10 20 25
Cost (percent)

1 5

2
4

3
7

9

11 12
14

10

6

13

8

Figure 4. Cost–value diagram for the RAN project requirements. By not implement-
ing the requirements that contribute little to stakeholder satisfaction, such as 10, 11, and
12, you can significantly reduce the cost and duration of development.

f e a t u r e

I E E E S O FT W A R E 7 3

.

proach; this required slightly over 30
minutes. This rate is in line with the ef-
fort on the RAN project.

Requirements’ value. Figure 5 shows the
value distribution of the 11 requirements
in the PMR project. Once again, the
three most valuable requirements carry
most of the value: requirements 4, 5, and
6 account for 63 percent.

Requirements’ cost. Figure 6 shows the
cost distribution of the 11 requirements.
The three most expensive require-
ments—4, 5, and 9—account for 57 per-
cent of implementation costs.

Requirements’ cost–value analysis. Figure
7 shows the candidate requirements in
the PMR project in a cost–value diagram.
Of the 11 candidate requirements in the
PMR project, two fall into the high ratio,
six into the medium ratio, and three into
the low ratio category. This illustrates
how the management task of release
planning, for example, is aided by the
cost–value diagram. If the requirements
with high and medium ratios were se-
lected for implementation, 95 percent of
the value would be obtained at 75 per-
cent of the cost. Again, this suggests that
you can deliver a software system with
substantial customer satisfaction at a sig-
nificant reduction in cost.

Software engineering has been criti-
cized for lacking the trade-off analy-

sis that is always part of multidisciplinary
systems engineering.10 We believe the
cost–value approach is a useful first step
in filling this need. In some respects, our
approach is similar to that of the Quality
Attribute Requirements and Conflict
Consultant tool within Barry Boehm’s
Win-Win system.11 However, because
of the mathematical basis of AHP, our
approach yields more concrete results
and could be a useful complement within
the Win-Win environment. Similarly,
recent work in the field of software ar-
chitecture provides mathematical analy-
ses of the quantitative design space,12

such as spectrum analysis and contribu-
tion analysis. The cost–value approach is

an important addition to these ap-
proaches as well, as it is more visible,
more robust, and easier to use.

There are still a number of problems
to be overcome if our approach is to be
easily adopted by practitioners. Although
our initial users found the cost–value ap-
proach intuitive and more useful than
traditional approaches, they also found
carrying out all the required pairwise
comparisons tedious. They sometimes
got distracted and had to backtrack to
check the consistency of earlier pairwise
comparisons.

We have identified several additional is-
sues to be resolved. First, the method takes
no account of interdependencies between
requirements, leaving software managers
to deal with them. For example, to imple-

ment a low-cost, high-value requirement,
you might have to implement a high-cost,
low-value one as well. This situation did
not arise in our case studies, where the re-
quirement sets were quite small. With a
larger number of requirements, this could
be a major consideration. We are continu-
ing to work on these issues. A more detailed
account of this work, including our experi-
ence with a prototype tool, will be pub-
lished in Requirements Engineering Journal,
Vol. 2, No. 1 (Springer-Verlag, 1997).
More requirements will also raise the prob-
lem of complexity, since the number of
pairwise comparisons is of O(n2). Thus, we
are now developing adequate tools to sup-
port the pairwise comparison process, to
minimize the number of comparisons re-
quired, and to cater to the interdependen-

Requirement

Va
lu

e
(p

er
ce

nt
)

35

30

25

20

15

10

5

0
0%

6%
3%

11%

32%

20%

9%

4%
2%

9%

3%

1 2 3 4 5 6 7 8 9 10 11

Figure 5. The requirements’ value in the PMR project. Requirements 4, 5, and 6 ac-
count for 63 percent of the value.

Requirement

Co
st

(p
er

ce
nt

)

30

25

20

15

10

5

0

5% 6%

19%

28%

4% 5%
7%

10%

3%

8%

1 2 3 4 5 6 7 8 9 10 11

6%

Figure 6. The estimated cost of implementing the 11 requirements in the PMR project.

7 4 S E P T E M B E R / O C T O B E R 1 9 9 7

.

cies that will inevitably arise. This tool will
also be capable of storing information
about the pairwise comparisons such as the
people responsible, their rationale, and
their assumptions.

Our cost–value method is based on a
well-established analytical technique and,
with reasonable effort, provides a clear
indication of the relative costs and values
of all candidate requirements. The case

studies have shown that, even in its pre-
sent form, the cost–value approach is use-
ful for prioritizing requirements. It may
also be especially applicable as an aid for
requirements selection, since we have
found that both the value and cost of re-
quirements can vary by orders of magni-
tude. Such differences are effectively vi-
sualized through cost–value diagrams,
which let management take action to
maximize stakeholder satisfaction. The
diagrams can also be used to prioritize re-
quirements over several release cycles.

Communications between customers,
users, and project managers are always
likely to be difficult. A clear understand-
ing of the choices involved in require-
ments selection can greatly assist this
communication. We believe that our
cost–value approach lays the foundation
for a clear, sound, and usable method for
determining requirements priorities. ◆

5 15

Va
lu

e
(p

er
ce

nt
)

35

30

25

20

15

10

5

0 0 10 20 30
1

5

2

4

3

7

9

8
11

6

10

Cost (percent)
25

Figure 7. Cost–value diagram depicting the PMR project requirements.

ACKNOWLEDGMENTS
This work was supported by Ericsson Radio Systems AB and The

Swedish National Board for Industrial and Technical Development,
project number 9303280-2. We also thank the anonymous reviewers
for providing valuable comments, and Lena Bjerlöw, Stefan Olsson, and
Kristian Sandahl for commenting on a draft of this article.

REFERENCES
1. A. Davis, Software Requirements: Objects, Functions and States, Prentice Hall

Int’l, Englewood Cliffs, N.J., 1993.
2. M. Lubars, C. Potts, and C. Richter, “A Review of the State of the Practice

in Requirements Modeling,” Proc. IEEE Int’l Symp. Req. Eng., IEEE
Computer Soc. Press, Los Alamitos, Calif., 1993, pp. 2-14.

3. J. Siddiqi and M.C. Shekaran, “Requirements Engineering: The
Emerging Wisdom,” IEEE Software, Mar. 1996, pp. 15-19.

4. B. Curtis, H. Krasner, and N. Iscoe, “A Field Study of the Software Design
Process for Large Systems,” Comm. ACM, Dec. 1988, pp. 1268-1287.

5. S. Shiba, A. Graham, and D. Walden, A New American TQM: Four Practical
Revolutions in Management, Productivity Press, Portland, Ore., 1993.

6. J. Karlsson, “Software Requirements Prioritizing,” Proc. 2nd IEEE Int’l
Conf. Req. Eng., IEEE Computer Soc. Press, Los Alamitos, Calif., 1996,
pp. 110-116.

7. T.L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New York, 1980.
8. C. Potts, “Software Engineering Research Revisited,” IEEE Software,

Sept. 1993, pp. 19-28.
9. J. Karlsson, Towards a Strategy for Software Requirements Selection, Dept. of

Computer and Information Science, Linköping Univ., Linköping,
Sweden, Licentiate thesis 513, 1995.

10. S.J. Andriole and P.A. Freeman, ”Software Systems Engineering: The
Case for a New Discipline,” Software Eng. J., May 1993, pp. 165-179.

11. B.W. Boehm and H. In, “Identifying Quality-Requirements Conflicts,”
IEEE Software, Mar. 1996, pp. 25-35.

12. T. Asada et al., “The Quantified Design Space,” Software Architecture, M.
Shaw and D. Garlan, eds., Prentice Hall, Englewood Cliffs, N.J., 1996,
pp.116-128.

Joachim Karlsson is cofounder and managing director
of Focal Point AB in Linköping, Sweden, and is affili-
ated with Linköping University. He consults, lectures,
and conducts research on software process, software
quality, and requirements engineering.

Karlsson received his MSc and Licentiate degree in
computer science from Linköping University, Sweden.
He is a member of IEEE.

Kevin Ryan is a professor of information technology at
the University of Limerick in Limerick, Ireland. His
main research interest is requirements engineering. He
has lectured and done research on software topics in
universities and in industry in Ireland, the US, Africa,
and Sweden and has been involved in major Esprit pro-
jects on software methods and tools.

Ryan received his BA, BAI engineering, and PhD in
computer science from Trinity College, Dublin. He is a
member of the IEEE Computer Society, ACM, and the
Irish and British computer societies.

Address questions about this article to Karlsson at Focal Point AB, Teknikringen 1E, 58330 Linköping, Sweden; joachim.karlsson@focalpoint.se; or Ryan at
kevin.ryan@ul.ie.

