
Requirements Eng (1997);2:. 51-60
�9 1997 Springer-Verlag London Umited Requirements

Engineering

Improved Practical Support for Large-scale Requirements
Prioritising
Joachim Karlsson a'l, Stefan Oisson a and Kevin Ryan b
aFocaJ Point AB, Teknikringen 1E, Unk6ping, Sweden; bCollege of Informatics and Bectronics, University of Umerick, Umerick, Ireland

An efficient, accurate and practical process for prioritis-
ing. requirements is of great importance in commercial
software developments. This article improves an existing
cost-vahte approach in which stakeholders compare all
unique pairs o f candidate requirements according to
their value and their cost o f implementation. Techniques
for reducing the required number of comparisons are
suggested, thus making the process more efficient. An
initial approach for managing requirements interde-
pendencies is proposed. A support tool for the improved
process has been developed to make the process more
practical in commercial developments. The improved
process and its support tool have been applied and
evaluated in an industrial project at Ericsson Radio
Systems AB. The results indicate a pressing need for
mature processes for prioritising requirements, and the
work presented here is an important step in that
direction.

Keywords: Requirements engineering; Requirements
prioritising; Cost-value approach

1. Introduction

A primary objective of requirements engineering is to
permit the development of software systems that satisfy
all of their stakeholders. Not only must the require-
ments engineers identify the stakeholders and their
requirements, but they must also manage conflicting

Correspondence and Offprint requests to: Joachim Karlsson, Focal
Point AB, Teknikringen 1E, SE-583 30 Link6ping, Sweden. Tel: + 46
13 21 37 05; fax: +46 13 21 3725; email: Joachim.Karlsson@
focalpoint.se
1Also at Department of Computer and Information Science. Link-
6ping University, Sweden

preferences and expectations. This is important since it
is frequently the case that not all stakeholder require-
ments can be fully implemented, especially when
expectations conflict or when resources are limited. In
addition, requirements engineers will frequently have
to distinguish between those requirements which will
have a major impact on stakeholder satisfaction and
those which will not. This is crucially important since
the value of candidate requirements, as well as the cost
of meeting those requirements, have been shown to
vary by orders of magnitude [1]. To deal with this aspect
we need an effective and practical process for prioritis-
ing software requirements.

This article justifies, describes and evaluates an
effective process for prioritising software requirements.
In previous work [2], a promising approach was
identified which employs a pair-wise comparison
method to establish requirements priorities in two
dimensions: value to the stakeholders, and cost of
implementation. This cost-value approach has its roots
in the Analytic Hierarchy Process (AHP), which is an
analytical tool useful for multi-criteria decision making
[3]. When evaluated in industry the basic the cost-value
approach was liked by practitioners but some practical
drawbacks were identified which made it problematic
for large-scale use. In addition there was a clear need
for tool support to ease the clerical and computational
burden on tl-/e practitioner.

In response, we have revised and improved the
process and provided a tool to support it. For example,
we have incorporated techniques to reduce the
required number of pair-wise comparisons, thus extend-
ing the usefulness of the process to industrial software
projects with many requirements. We have developed
an initial approach for coping with requirements
interdependencies, where stakeholders can observe
how the selection of one requirement has an impact on

52 J. Kaflsson, S. O~son and K. Ryan

the value and cost of implementing another. These, and
other improvements, have been implemented in a
support tool which reduces much of the burden on the
practitioners by, for instance, automating calculations,
plotting cost-value diagrams and indicating consistency
errors. Finally, we have evaluated the improved process
and its supporting tool in a commercial telecommunica-
tions software development project. The overall results
were very positive, although further improvements are
possible.

Section 2 outlines the background and our research
approach. Section 3 discusses requirements prioritising,
outlines the cost-value approach and details difficulties
with the basic approach. Section 4 outlines the process
improvements which include reducing the number of
comparisons, managing requirements interdependen-
cies and allowing hierarchical representation of
requirements. Section 5 presents the support tool for
the improved process, and section 6 recounts the results
and observations from the industrial application and
evaluation. Finally, section 7 concludes the paper and
suggests further steps.

2. Background

Since 1992, Ericsson Radio Systems AB and the
Department of Computer and Information Science at
LinkOping University have been involved in a joint
research program with the aim of improving the
software engineering process, especially the early
phases of the software life-cycle. In this collaboration
the researchers participated in Ericsson's commercial
development projects, with the aim of identifying
immature activities, suggesting improvement opportu-
nities, evaluating them in practice, and studying the
outcomes. This collaboration has given us the opportu-
nity to use the industry-as-laboratory approach [4]. We
do not primarily perform academic experiments but
instead participate as researchers in commercial pro-
jects using an approach termed action research. This is a
form of self-reflective inquiry undertaken by a
researcher, in an organisational context, so as to
improve his or her own practices or understanding of
these practices [5]. Two important characteristics of
action research can be identified [6]. Firstly, the
researcher seeks to gain more knowledge, but is also
concerned to apply this knowledge. Secondly, the
problem to be solved is defined by the practitioners, not
by the researcher.

Performing such studies in industrial projects
involves both a challenge and a risk. It is a challenge

since long-term industrial studies are necessary and
important in requirements engineering [7]. But it is also
a risk since the commercial objectives of the projects
must take precedence and therefore projects can
change direction drastically, be moved to other geo-
graphical locations or be cancelled at short notice, any
of which can be very difficult for the researcher.

Our action research is to a large extent motivated by
the comprehensive field study carried out by Lubars et
al. [8]. Their study shows that many organisations
believe it is important to assign priorities to require-
ments and make decisions about them according to
rational, quantitative data. Despite this, no company
really knows how to assign priorities or how to
communicate those priorities effectively to project
members. It is all the more surprising therefore that
there also seems to be a lack of research in the area of
requirements prioritising 19].

To address the lack of industrially useful prioritising
methods, we first developed and applied a numeral
assignment method to prioritise requirements, but the
method was neither accurate nor trustworthy enough.
In a comparative study we contrasted thiz approach
with a pair-wise comparison method based on the AHP.
We found that the latter approach yields more accurate
and more trustworthy results, and is also faster [10].
After subsequent discussions with management we also
realised the need for trading off value and cost when
prioritising requirements. A requirement should be
given priority mainly guided byi ts value in relation to
its cost of implementation. The cost-value approach for
prioritising requirements was therefore developed.

3. Requirements Prioritising

In commercial software development there are usually
few requirements that are considered absolutely man-
datory and, for our purposes, these will be treated as
part of the given implementation context. All of the
others are negotiable both as to whether they should be
implemented or not, and as to the degree to which they
should be met. Moreover, in commercial projects, the
desirability of requirements is strongly linked ito.their
cost of implementation. Requirements estimated to be
much more expensive than initially expected may lose
their attraction to the stakeholders. On the other hand,
requirements estimated to be cheaper than initially
expected may, as a result, be more attractive to the
stakeholders.

Improved Practical Support for Large-scale Requirements

3.1. The Cost-Value Approach

In previous work the cost-value approach for prioritis-
ing software requirements was developed, applied in
commercial projects and later evaluated [2]. When
using this approach the stakeholders quantify the value
and cost of candidate requirements before, for instance,
selecting requirements for implementation or planning
what to include in later releases. A requirement 's value
is defined as its ability to contribute to customer
satisfaction with the overall system, when successfully
implemented. A requirement 's cost is an estimate of the
additional cost required to meet that requirement
alone. By relating each requirement 's value to its cost,
stakeholders have a measure of that requirement 's
ability to contribute to customer satisfaction.

The cost-value approach uses techniques from the
AHP, for the quantification of value and cost of
implementation. In the AHP, stakeholders compare
pairs of candidate requirements, according to the two
criteria, value and cost of implementation, using the
fundamental scale in Table 1. Based on the pair-wise
comparisons, the value and, cost distributions are
calculated using techniques provided by the AHP. If
stakeholders were perfectly able to judge each require-
ment 's relative cost and value, the resulting distribu-
tions would be perfectly consistent. In practice, how-
ever, errors of judgement do occur, but the redundancy
of pair-wise comparisons is very useful since it makes
the A H P less sensitive to these errors. In addition, the
A H P provides techniques to measure inconsistency by
calculating consistency indices and consistency ratios.

Another important advantage of the A H P is the fact
that the scale used for measuring the requirements

Table 1. Fundamental scale for pair-wise companions [3]

Relation intensity Description

1 Of equal value (of equal cost of
implementation)

Moderate value (cost) difference

Essential or strong value (cost) difference

Very strong value (cost) difference

Extreme value (cost) difference

2,4,6,8 Compromise numbers between the two
adjacent judgements

Reciprocals If requirement i has one of the above numbers
assigned to it when compared with require-
ment j, then j has the reciprocal value when
compared with i

53

priorities is a ratio scale. The four most common
measurement scales are, in increasing order of strength:
nominal, ordinal, interval, and ratio scale [11]. In the
nominal scale, numerals are used as labels, where words
or letters would serve as well. A typical example is the
numberifig of soccer players for the identification of the
participants. The ordinal scale is used for rank-ordering
purposes, such as assigning students grades on a scale
ranging from 1 to 5, where 5 is best. The difference
between a 5 and a 4, however, is not necessarily the
same as the difference between a 4 and a 3, so the
ordinal scale is not invariant when it comes to equality
of differences. In the interval scale, however, there is an
equality of differences. This can be exemplified by the
Centigrade scale, where the difference between 20~
and 21~ is exactly the same as the difference between
29~ and 30~ The strongest measurement scale is the
ratio scale, which not only satisfies equality of intervals,
but also equality of ratios. That is, if the distance
be tween . two cities is measured to be 10 miles, this
distance is:exactly twice the distance of 5 miles. It does
not, for instance, make sense to claim that 20~ is twice
as warm as 10~ Since requirements priorities using
the A H P are based on a ratio scale, interesting and
useful assessments of requirements ' priorities can be
made.

The cost-value approach for prioritising require-
ments is carried out in five consecutive steps, given in
detail in [2].

1. The. requirements engineers carefully review the
candidate requirements for completeness and to
ensure that the requirements are stated as clearly as
possible.

2. A representative set of customers and users apply
the pair-wise comparison method in the A H P to
assess the relative value of the full set of candidate
requirements. If the actual or potential customers
and users are not available, experienced software
analysts or marketing personnel use the A H P to
estimate the requirements ' values.

3. Experienced software engineers use the pair-wise
comparison method in the A H P to estimate the
relative cost of implementation of each member of
the set of candidate requirements.

4. A software engineer uses the A H P to calculate each
candidate requirement 's relative value and cost of
implementation, and plots these on a cost-value
diagram, where value is depicted on the y-axis and
cost on the x-axis.

5. The different stakeholders use the cost-value dia-
gram as a conceptual map for analysing and discuss-
ing the candidate requirements. This map provides a

54 J. Karlsson, S. Olsson and K. Ryan

useful focal point for the stakeholders. Based on this
discussion software managers can effectively prior-
itise the requirements and, for instance, decide
which requirements to select for actual implementa-
tion, or develop strategies for release planning.

It should be noted that currently the assessments of
value and cost of implementation are based on the
decision makers' experience and judgement, but could
of course be supplemented by any other method.

3.2. Difficulties with the Current Process

Although practitioners were enthusiastic about the
cost-value approach and viewed it as very useful in the
requirements engineering process, it was clear that
before it could be widely adopted some practical
problems needed to be addressed:

�9 Explosive growth in the number of comparisons. For n
requirements in a software development project, AHP
requires n(n-1)/2 pair-wise comparisons (since all
requirements are compared to all others). For the
approach to effectively scale up, techniques for reduc-
ing the required number of pair-wise comparisons must
be found. To illustrate the problem, a project involving
200 requirements would require a stakeholder to
perform 200(200-1)/2 = 19,900 pair-wise comparisons.
At the rate observed in practice, which is about one to
four comparisons a minute, this would take a number of
- - very boring - - weeks. Besides, experience shows
that later comparisons can be affected by fatigue.

�9 Lack of support for requirements interdependencies.
In most projects requirements are linked to one
another in various ways which can affect the actual
selection process. For example in our context, imple-
menting one requirement may affect the cost or value
of implementing another, or two requirements may be
mutually exclusive or, indeed, totally independent. To
better support practitioners, a prioritising process
should be able to manage requirements interdependen-
cies, so that the impact of including or excluding one
requirement can be observed by the decision makers,
ideally in the cost-value diagram.

�9 Lack of flexibility in structuring requirements. In its
initial form, the cost-value approach treats all require-
ments as belonging to a single level. Structuring the
requirements into a hierarchy is worthwhile for at least
three reasons. Firstly, in large projects the set o f
requirements is likely to be elaborated as a layered
hierarchy. According to Davis [12], 'in a typical complex
application, the best way to organise requirements is
probably a multilevel hierarchy where each level

corresponds to a different grouping criteria'. Secondly,
layering aids comprehension by stakeholders since they
can view requirements at an appropriate level of
abstraction. Finally, as will be seen, layering facilities
reducing the number of comparisons required in the
cost-value approach. Therefore, it is desirable that the
approach allows for hierarchical representation of
requirements.

�9 Lack of tool support. The initial industrial use of the
cost-value approach had highlighted the clerical bur-
den involved in managing even modest numbers Of
requirements. If the approach is to be used, routinely, in
large-scale projects some~computer-based support.is
essential.

4. Process Improvement

4.1. Reducing the Required Number of Pair-wise
Comparisons

The most pressing problem in the current version of the
cost-value approach is the number of pair-wise com-
parisons required in large-scale development projects.
As the number of candidate requirements increases, the
number of comparisons required grows polynomially.
Techniques to reduce the number of comparisons, while
still producing results with sufficient quality, have been
developed [13-15]. The generic name for these tech-
niques is Incomplete Pair-wise Comparisons (IPC).

For a development project having n candidate
requirements, n-1 pair-wise comparisons would be
enough to rank the requirements. However, , the AHP
requires n(n-1)/2 pair-wise comparisons to be carried
out. The redundancy is useful since stakeholders can
never be perfectly consistent in their judgements. The
question to be asked is how much redundancy really is
needed to cope with the inconsistent judgements. The
IPCs aim to reduce the number of pair-wise compar-
isons, while still keeping enough redundancy to pro-
duce high-quality results. This is possible since it is often
a waste of time to perform all pair-wise comparisons.
The quality improvement due to the last few pair-wise
comparisons is minor and will hardly affect the results
at all. Ideally, a support tool for the prioritising process
should provide stopping rules indicating when addi-
tional pair-wise comparisons are no longer necessary.
Such stopping rules can be divided into two separate
categories: local stopping .rules (LSR) and global
stopping rules (GSR). Local stopping rules operate
only on a single node in the requirements hierarchy,
whereas global stopping rules operate with respect to
the complete requirements hierarchy.

Improved Practical Support for Large-scale Requirements 55

4.1.1. Local Stopping Rule

An LSR is a means of reducing the required effort in
the AHP. The basic principle of these local stopping
rules is that they require a stakeholder to create at
least a spanning tree in a directed graph (i.e., the graph
is at least minimally connected). To create such a
spanning tree a minimum of n-1 pair-wise comparisons
must be completed. Thus the stakeholder leaves a
number of pair-wise comparisons 'blank'. Let us
assume that all comparisons are carried out, except for
that between requirements A and D, which is left
'blank'. In the directed graph which can be constructed
by the completed comparisons, there is at least one
path from requirement A to D. The 'blank' value (or
cost) can be computed by taking the geometric mean
of the intensities of all possible paths connecting
requirements A and D. To illustrate the principle, if
requirement A is determined to be twice as expensive
as requirement B, which in turn is estimated to be
three times as expensive as requirement C, the rela-
tionship of A to C can easily be calculated. Once the
blanks have been filled, the AHP is then used, as usual,
for the computation of the value (or cost)
distribution.

Harker [13] proposes an LSR to reduce the number
of redundant pair-wise comparisons at a node by
ordering the comparisons in decreasing informational
value and by stopping the process when the expected
added value of the next comparisons decreases below a
certain threshold. This local stopping rule is very
effective in large-scale applications since it may require
as few as n-1 pair-wise comparisons. The rule requires
further comparisons only until the maximum absolute
difference in the value (or cost) of any requirement
from one comparison to the next is < a%, where a is a
given constant. Then a stakeholder can stop making
comparisons since the remaining comparisons will not
contribute significantly.

Another approach for reducing the number of pair-
wise comparisons at a node is proposed by Shen et al.
[15]. In their approach requirements at a node in the
hierarchy are divided into several subsets, such that
these subsets have one requirement in common. The
pair-wise comparisons are then performed for each of
these subsets, where the common requirement serves
as a benchmark. This requirement determines how
much value (or cost) is contained in each of the
subsets. For example, assume requirements A, B, C, D
and E are to be prioritised. A, B and C are compared
in one subset and C, D and E in another. If A is twice
as valuable as C, and E is half as valuable as C in its
subset, we can easily compute the relative value of A
and E.

4.1.2. Global Stopping Rule

A GSR goes further than reducing the number of pair-
wise comparisons at a node. Instead it reduces the
number of pair-wise comparisons for a whole hierarchy
[14]. A motivating concept for this approach is the use
of global value (or cost) as input to forthcoming
comparisons. It is reasonable to assume that fewer
comparisons are needed for those nodes which have a
low overall impact on the final results of the process.
This means that the greatest effort is put into those
nodes which matter most. To illustrate the concept,
assume there are four branches in the hierarchy with
the relative values: 20%, 50%, 28% and 2%. Then the
effort required to further analyse the '2%' branch may
not be worthwhile.

One global stopping rule which can be used to
terminate further comparisons is the following:

Kstop
Maxdif <

~ . G w

where N is the number of nodes at a given level in the
hierarchy. Maxdif is the maximum absolute difference
in the value (or cost) from one comparison to the next.
G W is the global value (or cost) of the node, and Kstop
is a stopping constant supplied by the stakeholder.

4.2. Managing Requirements Interdependencies

In almost all large-scale projects, some requirements
are interdependent. When using prioritising as a means
for selecting among candidate requirements some kinds
of interdependency are especially relevant. For exam-
ple, given that a project manager has selected require-
ment A for implementation, then this may change the
cost for selecting requirement B; either B may be more
expensive to implement or may be less expensive. A
reasonable list of interdependencies for our purposes
would be as follows:

�9 Cannot-exist. Given that requirement A has been
chosen for implementation, then another requirement,
say requirement B, cannot be implemented. For exam-
ple, if the requirement 'stand-alone system' is chosen,
then the requirement 'support for electronic mail
features' cannot be met.

�9 Must-exist. Given that requirement A has been
selected for implementation, then requirement B has to
be chosen too. For example, if the requirement 'Inter-
net access' shall be met, then the requirement 'provid-
ing network facilities' must also be met in order for the
former requirement to make sense.

56 J. Karlsson, S. Olsson and K. Ryan

�9 Positive cost. Given that requirement A has been
chosen for implementation, then the cost of implement-
ing requirement B falls. For example, if 'English spell
checker' has been chosen for implementation, it is
likely that 'Swedish spell checker' will be cheaper.

�9 Negative cost. Given that requirement A has been
chosen for implementation, then the cost of realising
requirement B increases. For example, if 'long stand-by
time' is chosen for implementation for a cellular phone,
then 'light weight' is likely to bc more expensive since
the first requirement demands large batteries, which
may conflict with the second requirement.

�9 Positive value. Given that requirement A has been
chosen for implementation, then requirement B
becomes more valuable. For example, if "standard
interface alignment' is chosen for implementation, then
'a cut-and-paste feature' increases in value.

�9 Negative value. Given that requirement A has been
chosen for implementation, then requirement B
becomes less valuable. For example, if 'on-line help' is
chosen for implementation, then having a 'detailed
manual' may decrease in value.

A first step towards supporting the interdependencies
in the cost-value approach would therefore be to
provide means for defining these relations between
requirements. While it is clear that a more compre-
hensive treatment of requirements interdependencies
would be very desirable, it was felt by practitioners that,
at least initially, these simple relations would be
adequate.

4.3. Allowing Hierarchical Representation

In large-scale developments, requirements are struc-
tured in different ways, such as hierarchies, in order to
get a better overview of the requirements, but also to
minimise the impact of changes to the requirements.
Moreover, as its name implies, the AHP was designed
to support such hierarchical structures. Hierarchies are
useful in the prioritising process since they reduce the
required number of pair-wise comparisons. In a hierar-
chical structure, only those requirements at the same
node are pair-wise compared. Moreover, the global
stopping rule described above depends on a hierarchi-
cal structure in order to function. An effective process
for prioritising requirements must consequently be
capable of managing hierarchical structures of require-
ments as well as the more simple flat structures of
requirements.

5. Tool Support for the Improved Process

The primary objective of the support tool was to reduce
the clerical overhead of the process. In addition, the
major improvements in the process, which have been
detailed above, imply an additional clerical and compu-
tational load so, if these were to be used in practice, a
support tool was essential.

5.1. Support Tool Requirements

After discussion with actual and potential users, the
following set of general requirements for the tool was
selected from a wider candidate set, using the cost-
value approach.

1. Storage and editing. Allow stakeholders to enter,
store, edit and display the requirements structure
(either hierarchical or flat).

2. Facilitate pair-wise comparisons. Traverse the
requirements structure and present pairs of require-
ments for the decision makers to make comparisons
according to value or cost.

3. Carry out the A H P Calculate the relative value and
cost distributions based on the pair-wise comparisons
and display them as separate lists or as a cost-value
diagram.

4. Estimate consistency. Compute and display the con-
sistency indices and ratios as prescribed by the AHP.

5. Support selection of requirements. Allow the user to
select a subset of requirements from the cost-value
diagram and provide the user with feedback on the
resulting cost and value of the subset.

6. Support incomplete pair-wise comparison. Imple-
menl at least one global stopping rule and at least one
local stopping rule. Allow the user Io switch the use of
the stopping rules on and off.

7. Support requirement interdependencies. Implement
means for specifying and using requirement interde-
pendencies. The cost-value diagram should reflect the
interdependencies between those requirements
selected for implementation. Allow the user to switch
the use of the interdependencies on and off.

5.2. Support Tool Implementation

The support tool was implemented through a series of
prototypes [16]. A first version of the support tool
covering the initial cost-value approach was imple-
mented. Once the first version was working, tests
showed that, despite its simplicity, it speeded up the

Improved Practical Support for Large-scale Requirements 57

Requirement I

Sueen resolution

t ~lr, I;h ~r

CI: 15
CR: 17

Requirement 2

Refresh falo

I= lol~ r.lolol=r

local global

is s~zeofReq�9 LI~'I~ ,, 3. I~i';I
17 (~) whole groJect

the pair-wise comparisons. The user can select a subset
of requirements, shown as filled squares in the figure,
and the tool displays the relative value and cost of the
selected subset. One global stopping rule and two local
stopping rules, as described earlier, were implemented
in the support tool, and the user is free to switch them
on and off at any time.

Implementing the interdependencies was the most
complex aspect. In its present very basic form, the
support tool allows a user to express simple interde-
pendencies such as the following:

Fig. 1. An example of a pair-wise comparison of candidate
requirements.

prioritising process and was welcomed by the practitio-
ners. Additional features were added successively.

An editor was designed and implemented which
stores structures of requirements and presents them for
comparisons in the format shown in Fig. 1. The tool
carries out the AHP and can produce cost-value
diagrams such as that shown in Fig. 2. Clicking on the
information button will display the consistency indices
and ratios, indicating the level of judgmental error in

~9
Value

30-

20 ~

1-19.

1, 5

rn4, n 7 .

o

Current level: 2 ~ ~ ~ Value 85
(doubler162

0 100

Cost 45

0 100

Fig. 2. An example of a cost-value diagram where filled boxes
represent selected requirements.

�9 Requirement A makes requirement B necessary.

�9 Requirement C makes requirement D impossible.

�9 Requirement A makes requirement C cheaper (the
cost for requirement C is decreased by either 30% or
60%).

�9 Requirement E makes requirement F more valuable
(the value for requirement F is increased by either 30%
or 60%).

The interdependencies are taken into account when
selecting requirements on the cost-value diagram. If,
for instance, the interdependencies listed above were
used, requirement F is moved to a new position on the
cost-value diagram corresponding to its new estimated
value when requirement E is selected or deselected for
implementation. In this way the decision makers can
see immediately the approximate impact of the
interdependency.

6. Industrial Application and Evaluation

Having developed the support tool, we wanted to have
it evaluated further by experienced developers who had
not previously been involved with the cost-value
approach. Senior developers in a commercial tele-
communications project at Ericsson Radio Systems AB,
who were developing additional functions for Base
Stations Controllers, applied the support tool in their
requirements work.

A total of more than 200 requirements were identi-
fied but, to minimise the developers' time commitment,
the study was restricted to the 23 requirements dealing
with product improvement. Furthermore, we emphas-
ised the evaluation of the process and the usefulness of
the process and its support tool rather than studying
other details such as the user interface. Instead of
producing test cases and documenting the behaviour of
the users, we provided help for them to get started, and
interviewed them after the sessions, discussing the
outcome and their experiences.

58 J. Karlsson, S. Olsson and K. Ryan

We introduced the concept of pair-wise comparisons
and the use of the support tool to the developers by
running a simple example. This instruction and sub-
sequent discussions required about 30 minutes. The
developers then used the support tool under our
supervision to pair-wise compare the 23 requirements
according to the criteria value and cost of implementa-
tion. Performing pair-wise comparisons of 23 require-
ments required 23(23-1)/2 = 253 comparisons for each
criterion. By using one of the implemented local
stopping rules, that provided by Harker [13], the
number of comparisons was greatly reduced, from 253
to 60 per criterion.

6.1. Results

The developers completed their task in about 60
minutes. Interestingly, at the same pace a total of 4
hours would have been required without the local
stopping rule. The resulting cost-value diagram of the
23 requirements is shown in Fig. 3. By selecting for
implementation all requirements except numbers 7, 10,
13 and 18 the total value is only decreased to 91%, but
the cost would be reduced significantly, to 73% of the
cost of implementing all the candidate requirements.

6.2. Observations

After the evaluation session we spent 30 minutes with
each test person discussing the results. In general the
reactions were very positive. The developers approved
of our objectives and were convinced that the cost-
value approach was very attractive. They were
impressed by the speed with which they did the
rankings, supported by the tool, and felt that the results
were both quicker and more accurate than the ordinal
scale they were used to. In summary, they judged that
the process and the support tool had excellent potential
to save time in prioritising requirements and that, if a
suitable commercial version was available, it could be
adopted for use at Ericsson. The main obstacle to this at
present was the lack of flexibility in the tool. It should
cater fully for changing both the contents and the
structure of the requirements and, in particular, it
should allow the input and use of actual costings. For
example, when the developers had good estimates of
the implementation cost of some of the requirements,
they found it tedious to compare these costs to one
another, rather than enter the 'known' costs once and
for all so that they could concentrate on the relation-
ship between more problematic costs.

As final note, the improved process and its support
tool were highly appreciated and regarded as useful in
commercial software development projects. The devel-
opers agreed that this effective and accurate approach
to visualising requirements value and cost is very
beneficial in commercial projects.

7. Conclusions and Further Steps

In this article we have outlined directions towards an
improved process for prioritising software require-
ments in large-scale development projects. This
approach allows requirements engineers effectively and
accurately to prioritise requirements based on pair-wise
comparisons in two dimensions: the requirements'
value, and their cost of implementation. Practical
improvements have been implemented which include
global and local stopping rules for reducing the
required number of pair-wise comparisons and an
initial strategy for dealing with requirements interde-
pendencies. The stopping rules proved to be partic-
ularly useful in the application project. They reduced

Value

10- / m5.

m14.
m l / I2. m21.

�9 22. / ms. ll. 112.
/ 114,19. m9.

�9 y % .

~ IJ'~" 07. Cost
lb

Current level: 2 r~ ~ ~ V~lue 91
(doubleclick) (.)

0 100

Cost 73

(
0 100

Fig. 3. Cost-value diagram for the 23 candidate requirements in the
evaluation study.

�9 Improved Practical Support for Large-scale Requirements 59

the required number of pair-wise comparisons b~ as
much as 75%. A support tool covering the cost-value
approach and a number of additional features was
developed and applied in a commercial project at
Ericsson Radio Systems AB. Qualitative responses
indicated a strong need for effective processes for
prioritising requirements. That need was, to a large
extent, fulfilled by the improved cost-value approach
but, of course, further improvements are always
possible.

7.1. Future Work

We have identified two important aspects for future
work. The first is to evaluate the improved cost-value
approach in other commercial projects. It is planned to
perform in-depth interviews and to collect and analyse
qualitative data. The second aspect is to further
improve the support tool. The following features are
regarded as desirable by the practitioners using the
current version:

�9 Pair-wise comparison rationale. Someone might want
to look at the pair-wise comparisons done a long time
ago, or by someone else. It would be easier to
understand the pair-wise comparisons if the relevant
stakeholder could add a comment explaining each
decision.
�9 Indication o f contradictory comparisons. Whenever a
user is inconsistent, i.e., provides pair-wise comparisons
that contradict each other, the support tool should give
an indication as to where the inconsistency is to be
found. By showing the user the contradicting pair-wise
comparisons it could pinpoint the requirements
involved. Occasionally a decision maker can provide
contradictory circular pair-wise comparisons. This
implies that a user, for example, claims requirement A
to be of higher value than requirement B, which in turn,
the user claims to be of higher value than requirement
C, which is deemed to be of higher value than
requirement A. Such circular, inconsistent judgements
should be detectable by a support tool.

�9 Organisational adaptability. The support tool should
help its users within the context of an organisation's
existing development process. It may be the case that
the organisation's process must be adapted so as to
include the cost-value approach, but it must be possible
to tailor the support tool to fit the context.

�9 Allowing multi-user features. More than one decision
maker can be involved in the requirements prioritising
process. It is thus important that the input be taken
from multiple sources. At least three ways can be
identified to allow multi-user features. The possibility is

that the stakeholders prioritise different parts of the
requirements hierarchy, and together these constitute
the complete distribution. Alternatively, all stake-
holders prioritise all parts of the requirements hier-
archy, and then the project manager uses his or her
judgement to reconcile the priorities. The third option is
that more than one stakeholder prioritises the entire
requirements hierarchy. In this case the geometric
mean of the stakeholders' pair-wise comparisons is
used to reconcile their priorities. The decision as to
which option to use will depend on the range of
expertise available to make the evaluations.

�9 Supporting requirements evolution. As commercial
projects progress, the requirements are likely to change.
It is also possible that later releases of software systems
will have differing requirements. If, in these cases, all
requirements were to be re-prioritised, the effort
involved is likely to be overwhelming. It would be
preferable that, when requirements are added or
changed, these must be pair-wise compared to each
other, and to some of the other existing requirements.
But they must only be compared to a minimum of other
requirements in order to gain sufficient information. In
the case where a requirement is removed, re-prioritis-
ing ought to be completely avoided. Instead, the
remaining requirements' values (or costs) should be
recalculated.

�9 Linking absolute costs to relative costs. In the evalua-
tion session of the improved process and its support
tool the developers asked for more flexibility regarding
known costs for requirements. Such knowledge can be
very useful for assessment purposes in the require-
ments work as well as in the planning work. Consider
the case where a stakeholder estimates the cost of
meeting one requirement as $10,000. Moreover, assume
that if, after all pair-wise comparisons have been carded
out, this requirement stands for 17% of the total cost.
Then a first, rough estimate of meeting all requirements
can be calculated as $50,000/0.17 which is almost
$300,000. In addition, each of the other requirements'
costs can be calculated by multiplying their relative cost
by the total estimated cost. This approach must of
course be used with great care. We do believe, however,
that the speed and simplicity of this approach can be
very useful and important for practitioners as an early
cost estimation. It should also be possible to reduce the
number of comparisons by not requiring the use of the
support tool to make redundant comparisons that
involve absolute costs.

�9 Comparing and evaluating techniques for reducing the
number o f required pair-wise comparisons. Reducing
the number of pair-wise comparisons is important in
commercial software development, due to time and

60 J. Karlsson, & Olsson and K. Ryan

resource constraints. It is therefore of great interest to
implement and evaluate techniques for this purpose.
Only a small number of the available approaches have
been explored to date, and a fuller evaluation would be
well worthwhile.

�9 Managing requirements interdependencies. The initial
approach for dealing with requirement interdependen-
cies proposed in this article needs further development
and evaluation.

Acknowledgements
This work has been supported by Ericsson Radio Systems AB
and the Swedish National Board for Industrial and Technical
Development, project number 9303280-2.

References
1. Karlsson J, Ryan K. Supporting the selection of software

requirements. In 8th International workshop on software
specification and design, 1996, pp. 146-149

�9 2. Karlsson J, Ryan K. Prioritising requirements using a
cost-value approach. IEEE Software, to appear

3. Saaty TL. The analytic hierarchy process. McGraw-Hill,
New York, 1980

4. Potts C. Software engineering research revisited. IEEE
Software 1993; 10(5): 19-28

5. Carr W, Kemmis S. Becoming critical: educational,
knowledge and action research. Falmer Press, 1986

6. Mansell G. Action research in information systems
development. J Inform Syst 1991; 1(1): 29-40

7. Bubenko JA Jr. Challenges in requirements engineering.
In 2nd IEEE international symposium on requirements
engineering, 1995, pp. 160-162

8. Lubars M, Potts C, Richter C. A review of the state of the
practice in requirements modeling. In IEEE international
symposium on requirements engineering, 1993, pp. 2-14

9. Zave E Classification of research efforts in requirements
engineering. In 2nd IEEE international symposium on
requirements engineering, 1995, pp. 214-216

10. Karlsson J. Software requirements prioritising. In 2nd
IEEE international conference on requirements engi-
neering, 1996, pp. 110-116

11. Stevens SS. On the theory of scales of measurement.
Science 1946; 103: (2648) 677-680

12. Davis A. Software requirements: objects, functions and
states. Prentice-Hall, Englewood Cliffs, NJ, 1993

13. Harker E Incomplete pair-wise comparisons in the
analytic hiearchy process. Math Modelling 1987; 9(11):
837-848

14. Millet I, Harker E Globally effective questioning in the
analytic hierarchy process. Eur J OR 1990; 48(1): 88-97

15. Shen Y, Hoed AE, McConneli W. An incomplete design
in the analytic hierarchy process. Math Comput Model-
ling 1992, 16(5): 121-129

16. Olsson S. Improving and supporting the contribution-
based method (CBM), MSc thesis 9597, Department of
Computer and Information Science, Link/Sping Uni-
versity, 1996

