
WHITTEN BENTLEY

SEVENTH EDITION

SYSTEMS ANALYSIS & DESIGN METHODS

Objectives

- Describe the design phase in terms of your information building blocks.
- Identify and differentiate between several systems design strategies.
- Describe the design phase tasks in terms of a computer-based solution for an in-house development project.
- Describe the design phase in terms of a computer-based solution involving procurement of a commercial systems software solution.

System Design

Systems design – the specification of a detailed computer-based solution.

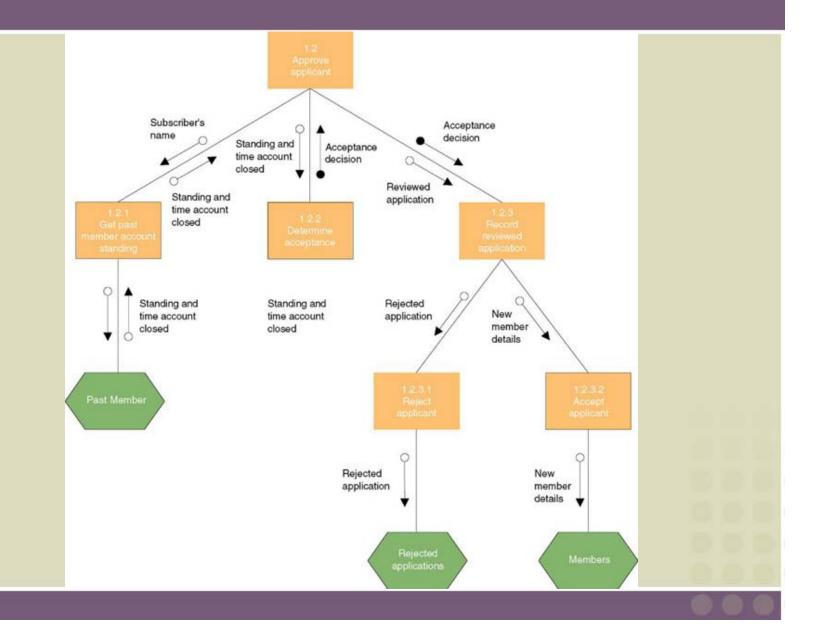
- Also called physical design.
- systems analysis emphasizes the business problem
- systems design emphasizes the technical or implementation concerns of the system.

System Design Approaches

Model-Driven

- Modern structured design
- Information engineering
- Prototyping
- Object-oriented
- RAD
- JAD

Model-Driven Approaches

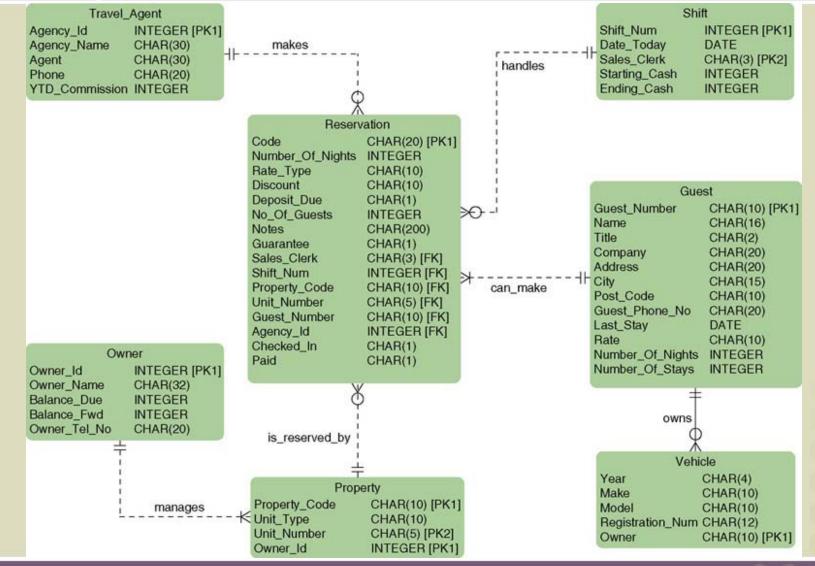

Model-driven strategy – a system design approach that emphasizes drawing system models to document technical and implementation aspects of a system.

Model-Driven Approaches – Modern Structured Design

Modern structured design – a system design technique that decomposes the system's processes into manageable components.

- Synonyms (although technically inaccurate) are top-down program design and structured programming.
- Design in a top-down hierarchy of modules
- Easier to implement and maintain (change).
- Modules should be highly cohesive
 - Accomplish one function only
- Modules should be loosely coupled
 - Minimally dependent on one another

Structure Chart


Model-Driven Approaches – Information Engineering

Information engineering (IE) – a modeldriven and data-centered, but processsensitive technique for planning, analyzing, and designing information systems. IE models are pictures that illustrate and synchronize the system's data and processes.

• The primary tool of IE is a data model diagram.

12-10

Physical Entity Relationship Diagram

Model-Driven Approaches – Prototyping

Prototype – a small-scale, incomplete, but working sample of a desired system

Iterative process involving a close working relationship between the designer and the users.

Key Benefits:

- Encourages and requires active end-user participation.
- Iteration accommodates end-users who tend to change their minds.
- Endorses philosophy that end-users won't know what they want until they see it.
- Active model that end-users can interact with.
- Errors can be detected earlier.
- Can increase creativity as it allows for quicker user feedback.
- Accelerates several phases of the life cycle.

Model-Driven Approaches – Prototyping

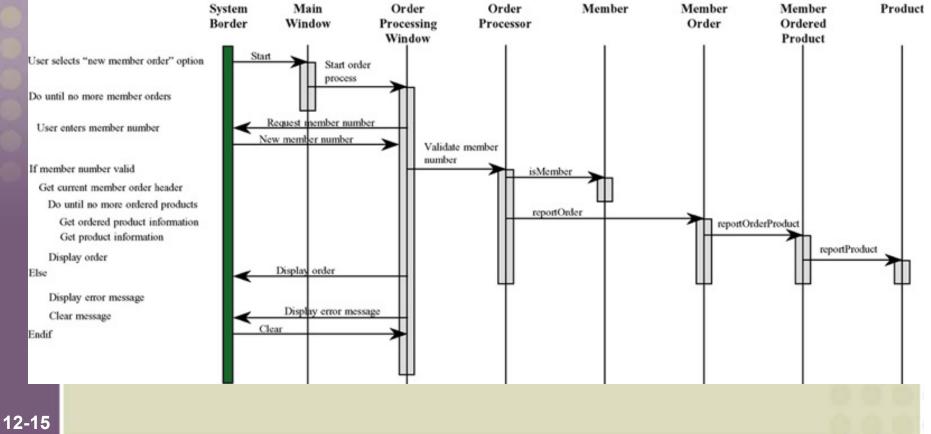
Disadvantages and Pitfalls:

- Encourages "code, implement, and repair" life cycle that cause maintenance nightmares.
- Still need systems analysis phases, but so easy to skip.
- Cannot completely substitute a prototype for a paper specification (like architect without a blueprint).
- Numerous design issues are not addressed by prototyping.
- Often leads to premature commitment to a design.
- Scope and complexity of the system can expand out of control.
- Can reduce creativity in designs .
- Often suffer from slower performance because of language considerations (rapidly becoming a non-issue).

Prototype screen

		Membe	rs					
Status O Dropped Frozen O Good Standing O Inactive O Probation	Member Number:	New Edit Memberships	Delete Exit Orders]]]	1		2	L
Address Information Name: Jeff Whitten Street Address: 129 Rural Route 6 City: Fowler Area Code: Phone: 319 789-3333	State: IN Extension:	P.O. Box 12999 Zip Code: 47756-3333	O Am O Dis O Ma O Vis Balance	astercard a		Expirati 2/2/96	981-2919 on Date:	۳

Model-Driven Approaches – Object-Oriented Design


Object-oriented design (OOD) techniques are used to refine the object requirements definitions identified earlier during analysis, and to define design specific objects.

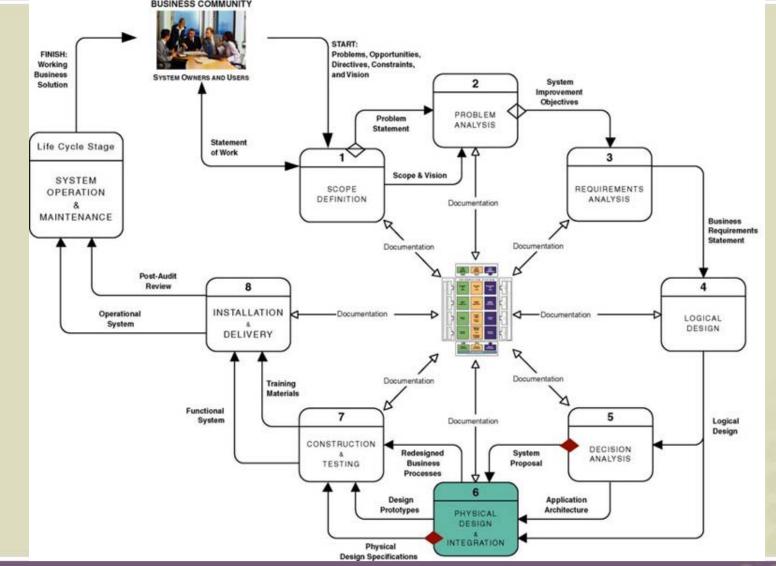
- Extension of object-oriented analysis
- Attempt to eliminate the separation of concerns about data and process.

Object-Oriented Design Model

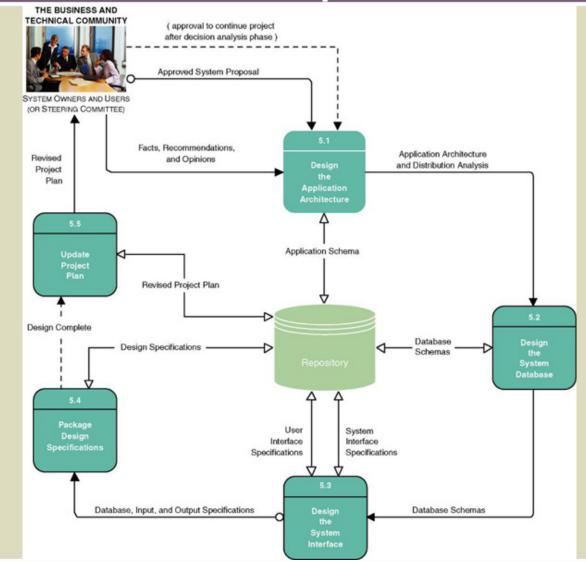
User selects "new member order" option

Rapid Application Development (RAD)

Rapid application development (RAD) – a systems design approach that utilizes structured, prototyping, and JAD techniques to quickly develop systems.


- The merger of various structured techniques to accelerate systems development
 - Data-driven information engineering
 - Prototyping
 - Joint application development

Joint Application Development (JAD)

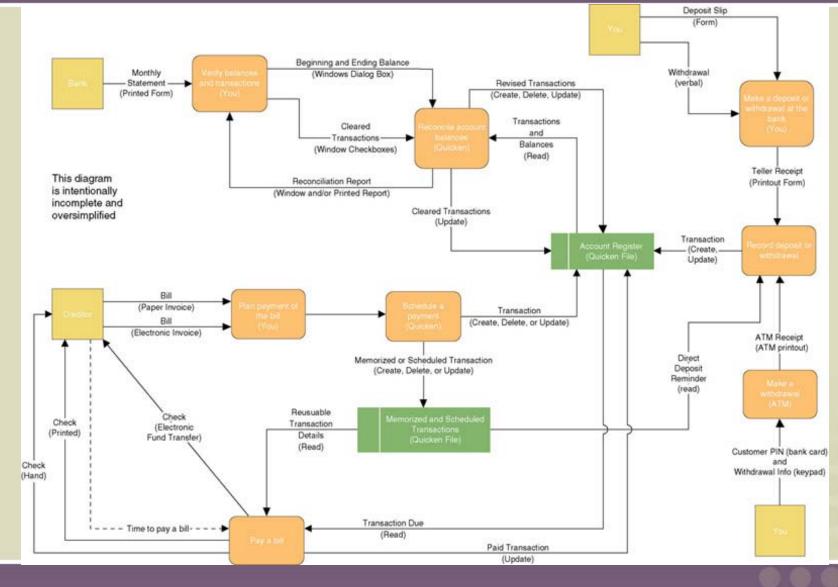

Joint Application Development (JAD) is a technique that complements other systems analysis and design techniques by emphasizing *participative development* among system owners, users, designers, and builders.

During the JAD sessions for systems design, the systems designer will take on the role of facilitator for possibly several full-day workshops intended to address different design issues and deliverables.

In-House Development Projects (Build)

System Design Tasks For In-House Development

System Design Tasks For In-House Development (Build)


- Design the Application Architecture
 - Define technologies to be used by (and used to build) one, more, or all information systems.
 - Revise models as physical models
- Design the System Databases
 - Database schema
 - Optimized for implementation DBMS
- Design the System Interface
 - Input, output, and dialogue specifications
 - Prototypes
- Package Design Specifications
 - Specifications to guide programmers
- Update Project Plan

12-21

Physical Data Flow Diagram

Output Prototype Screen

QuickReport version 1.0

Exit

A 日 🖉

Member Response to Video Title Selection of the Month

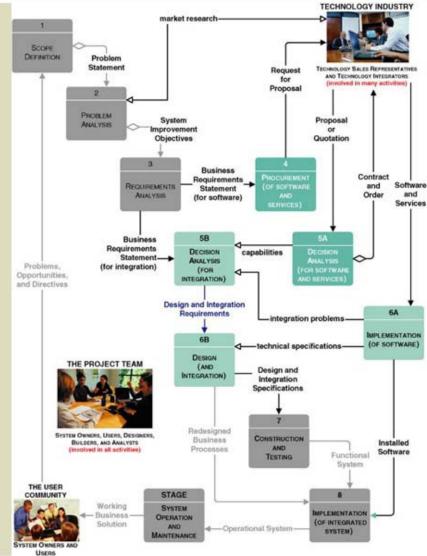
Page 1 of 1

-

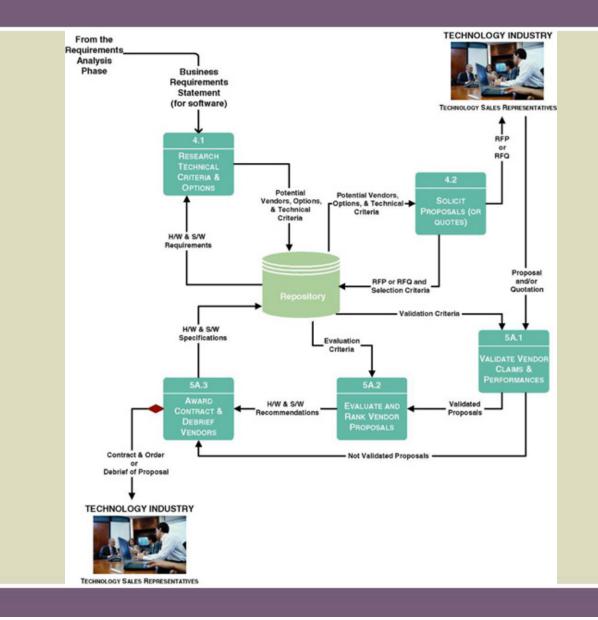
+

Page number 1 Printed at 6/14/96 7:3211 AM

Category	Potential Orders			Number of Orders		
Action Adventure	6342	2410	824	241	2867	
Animated	3577	1538	644	154	1241	
Comedy	964	181	38	18	716	
Documentary	1486	877	45	88	477	
Drama	540	389	54	39	58	
Western	104	9	54	1	40	
Horror	920	99	23	409	2501	
Musical	209	40	78	289	103	
Science Fiction	4590	2011	899	2200	5329	
Sports	288	288	277	121	387	
Sum of Potential Ord	ers	19	0010			
Sum of Selection of t			7842			
Sum of Alternate Sel			2936			
Sum of Selection of t Total Number of Orde			3560 3719			


12-22

+


Dialogue Interface Prototype Screen

System Design For "Buy" Solutions

Tasks for Procurement Phase

Tasks for Procurement Phase

- Research Technical Criteria and Options
- Solicit Proposals or Quotes from Vendors
- Validate Vendor Claims and Performances
- Evaluate and Rank Vendor Proposals
- Award Contract and Debrief Vendors

Research Technical Criteria and Options

- Magazines and journals
- Internal standards may exist for hardware and software selection.
- Information services are primarily intended to constantly survey the marketplace for new products and advise prospective buyers on what specifications to consider.
- Trade newspapers and periodicals offer articles and experiences on various types of hardware and software that you may be considering.

Solicit Proposals (or Quotes) From Vendors

Request for Proposals (RFP) – used to communicate requirements and desired features to prospective vendors. Several different vendors and/or products are candidates. They will respond with a proposal.

Request for Quotations (RFQ) – used when you have already decided on a specific product that can be acquired from multiple sources. They respond with a price quotation. Ι.

Typical Request For Proposal Outline

Introduction

- A. Background
- B. Brief summary of needs
- C. Explanation of RFP document
- D. Call for action on part of vendor

II. Standards and instructions

- A. Schedule of events leading to contract
- B. Ground rules that will govern selection decision
 - 1. Who may talk with whom and when
 - 2. Who pays for what
 - 3. Required format for a proposal
 - 4. Demonstration expectations
 - 5. Contractual expectations
 - 6. References expected
 - 7. Documentation expectations

Typical Request For Proposal Outline (cont.)

Requirements and features

A. Hardware

Ш.

- 1. Mandatory requirements, features, and criteria
- 2. Essential requirements, features, and criteria
- 3. Desirable requirements, features, and criteria
- B. Software
 - 1. Mandatory requirements, features, and criteria
 - 2. Essential requirements, features, and criteria
 - 3. Desirable requirements, features, and criteria
- C. Service
 - 1. Mandatory requirements
 - 2. Essential requirements
 - 3. Desirable requirements
- IV. Technical questionnaires
 - Conclusion

Validate Vendor Claims and Performances

- Review vendor proposals and eliminate any that does not meet all mandatory requirements.
- Validate the vendor claims and promises against validation criteria.
 - User References
 - Technical Manuals
 - Demonstrations

Evaluate and Rank Vendor Proposals

- Feasibility assessment
- Scoring system
 - Hard-dollar costs you will have to pay to the selected vendor.
 - Soft-dollar costs additional costs you will incur if you select a particular vendor (to overcome a shortcoming, etc.)

Award Contract and Debrief Vendors

- Negotiate contract with selected vendor.
- Debrief vendors that submitted losing proposals.
 - Not to offer a second chance.
 - But to inform them of precise weaknesses in their proposals and/or products.

Impact of Buy Decision on Remaining Life-Cycle Phases

- Must integrate or interface the new system to other existing systems.
- Decision Analysis
 - Make revisions in models to reflect purchased solution.
 - Implement purchased solution.
 - Integration problems lead to revised business requirements statements.
- Design
 - Technical specification for a subset of programs to integrate purchased and built solutions.