
M
any of the best ideas for new
products and product
improvements come from
the customer or end user of
the product [15]. In the
software arena, tapping into
this source of information
requires the establishment

of one or more customer-developer links. These links are
defined as the techniques and/or channels that allow
customers1 and developers2 to exchange information.

Today, a number of factors have combined to
make a wide variety of links available to
software developers. Technological
advances and cost reductions in
the area of telecommunications
have brought about the wide-
spread use of telephone sup-
port lines and electronic mail.
At the same time, the creation of
alternative approaches for require-

ments determination have led to widespread use of
prototyping and facilitated teams. Finally, commer-
cialization of software has fostered new structures for
customer participation through the use of focus
groups, user groups, and trade shows.

The tremendous variety of links that are available
today represents both an opportunity and a challenge
for software development managers. An opportunity
exists in that it has never been easier to obtain input
from customers. The challenge is that development
managers are now faced with a bewildering array of
customer-developer links from which to choose.

Deciding on the number and type of links
to use is anything but straightfor-

COMMUNICATIONS OF THE ACM May 1995/Vol. 38, No. 5 33

Customer-Developer Links
in Software Development

1We use the term “customer’’ to include
“user’’ throughout the rest of the article. See
[6] for a discussion of the term “user.’’

2 We use the term “developer’’ to include the
various individuals who are directly involved with

the design and production of software code.

Mark Keil
Erran Carmel

Development Dimension

Goal

Typical point at which most
customers are identified

Number of customer organizations

Physical distance between
customer and developer

Common types of projects

Terms for software consumer

Common measures of success

Custom

Software developed for internal
use (i.e., usually not for sale)

Before development begins

Usually one

Usually small (e.g., customers are
in same building as developers)

New system project;
“maintenance’’ enhancements

User; end user

Satisfaction; acceptance

Package

Software developed for external
use (i.e., for sale)

After development ends and the
product goes to market

Many

Usually large (e.g., customers
are thousands of miles from
developers)

New products; new versions
(major and minor)

Customer

Sales; market share; good
product reviews

ward. In the absence of any information on the num-
ber of links to employ or the effectiveness of various
links, how is a development manager to decide? This
article begins to address these issues by focusing on the
links that are currently in use and the experience that
development managers have had in applying them.

By focusing on links that are currently in use, our
goal is to draw practical insights concerning the type
and degree of participation that should be used to
engage customers in the development process [8]. We
do this by comparing and contrasting the links that are
used in two very different environments—the package
development environment (in which software is devel-
oped as a product for external sale) and the custom
environment (in which software is either developed in-
house or under contract and is intended for internal
use). Table 1, which is partially based on Grudin’s [6]
observations, highlights some of the key differences
between these two development environments (also
see [3] for a related comparison). Given these differ-
ences, one would expect to find differences in the links
that are used across the two environments.

We purposely chose to investigate these two very dif-
ferent environments for three reasons: (1) to obtain
the broadest possible view of the links that are in use
today, (2) to understand more about how managers
obtained customer input in the two environments and
the extent to which their environments shaped their
perceptions and choices of links, and (3) to draw atten-
tion to links that are currently used in one environ-
ment that might be usefully transferred to the other.

Background
It has long been recognized that customer-developer
mutual understanding and user participation are
important factors in the successful development and
implementation of systems [4, 8]. Prominent
approaches for encouraging customer participation
include sociotechnical systems theory (STS) and par-
ticipatory design (PD) [1, 11, 12]. Thus, the issue that
software development managers must grapple with is
not whether customers should participate in the devel-
opment process, but how they should participate [10].

The literature on customer participation has
developed along two conceptual levels. The macro
level acknowledges that user participation is benefi-
cial (e.g., [7]) and provides general approaches for
achieving this objective (e.g., PD and STS). The
micro level focuses on specific requirements analysis
techniques. A wide variety of specific techniques
(such as those documented in [2]) now exist to aid in
the process of determining customer requirements.
What the existing literature misses is the middle
ground that exists between these two levels, where
managers are faced with the dilemma of choosing a
combination of links that can be used to exchange
information with their customers.

Therefore, our focus is not on specific require-
ments analysis techniques per se, but rather on the
combinations of techniques and communication
channels that are used in practice to establish link-
ages between customers and developers. The term
customer-developer links is used here to describe the

34 May 1995/Vol. 38, No. 5 COMMUNICATIONS OF THE ACM

Requirements Gathering

Table 1. Relevant Differences Between the Custom and Package Development Environments

Link

Facilitated team

MIS intermediary

Support line

Survey

User-interface
prototyping

Requirements
prototyping

Interview

Testing

Email/bulletin board

Usability lab

Observational study

Marketing and sales

User group

Trade show

Focus group

Description

A facilitated, structured workshop with customers
(e.g., JAD) that is typically used to elicit requirements.

One who defines corporate customers’ goals and needs
to designers and developers.

The unit that helps customers with day-to-day problems (also
known as customer support, technical support, help desk).

Textual surveys administered to a sample of customers.

Customers are exposed to a demo, or early version,
to uncover user-interface issues.

Customers are exposed to a demo, or early version to
discover system requirements.

One-on-one with end-user; open-ended or semi-structured.

New requirements and feedback stemming from testing.
Does not include bug detection.

Customers post problems, questions, and suggestions to a
bulletin board or through email.

Specially constructed labs for taping and measuring user
subjects at work.

Customers are followed for an extended period to learn
what they do (e.g., ethnographic, protocol analysis).

Representatives regularly meet customers (current and
potential) to listen to suggestions and needs.

Customer groups convene periodically to discuss
software usage and improvements.

Customers are exposed to mock-up or prototype and
asked for feedback at a trade show.

A small group of customers and a moderator are brought
together to discuss the software. Discussion is

loosely structured.

Commonly used in:
P=Package C=Custom

C

C

P/C

P/C

P/C

P/C

P/C

P/C

P/C

P/C

P/C

P

P

P

P

COMMUNICATIONS OF THE ACM May 1995/Vol. 38, No. 5 35

Table 2. Customer-Developer Links

many ways in which customers and developers
exchange information during the development
process (similar to [13]).3

A link inventory of the commonly used customer-
developer links was created based on the knowledge
and experience of the authors coupled with a search
of the information systems and marketing literature
pertaining to customer involvement, requirements
determination, and product innovation. Based on
these sources and from validation that occurred dur-
ing the study, the list is believed to be fairly compre-
hensive. Table 2 presents the customer-developer
links that were included in the study, along with an
indication (based on our own experience) of the
environment(s) (i.e., package, custom, or both) with
which the link is normally associated.

The customer-developer link inventory (of Table
2) is the foundation for a central concept of this arti-
cle, namely, that these links can be counted within a
given project. The notion of counting links has intu-
itive appeal because it is widely believed that greater
customer participation can lead to more successful
software projects. Additionally, from the literature on
employee participation in the workplace, we know
that participation is most effective when a combina-
tion of different approaches are used to involve work-
ers [9]. Thus, we argue that defining and counting
links is an important first step toward quantifying the
domain of customer participation. We emphasize,
however, that the absolute number of links is only a
partial measure of customer participation and
involvement—the link characteristics and how the
link is employed in practice (e.g., how well the infor-
mation is conveyed) may well be more important. As
with any metric, counting links is but a partial mea-
sure and cannot tell the entire story.

Therefore, we augment the link inventory by intro-
ducing an important classification—that of direct links
versus indirect links. From a communication perspec-
tive, direct contact between customer and developer
is preferable to indirect contact because it decreases
filtering or distortion that may occur. Furthermore,
media richness theory [5] suggests that direct face-to-
face channels offer the prospect of richer communi-
cation because of the ability to transmit multiple cues
(e.g., physical presence, voice inflection, and body
language). Thus, direct links are likely to be particu-
larly important when there are high levels of ambigu-
ity, a situation that is especially likely to occur in the
communication of system requirements.

Indirect links are those in which the customer and
developer do not deal directly with one another but
communicate through intermediaries or customer

36 May 1995/Vol. 38, No. 5 COMMUNICATIONS OF THE ACM

Requirements Gathering

Table 3. Overview of the Sample

P=Package
C=Custom

C1

C2

C3

C4

C5

C6

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

Description

Telecommunications company
(listed in Business Week 1000)

Large computer company (listed
in Business Week 1000)

Major airline (listed in Business
Week 1000)

Major hotel chain (listed in
Business Week 1000)

Medium-size beverage producer

Large manufacturer of electrical
products

Fast-growing software tool
developer

CASE tool developer

Fast-growing programming
environment developer

Small, successful programming
environment developer

Well-known producer of Unix tools

Software division of large hardware
vendor—develops office software

Graphics software developer

Established financial software
developer (listed in Software
Magazine 100)

Established manufacturing
software developer (listed in
Software Magazine 100)

Established office automation
developer (listed in Software
Magazine 100)

Software division of large
hardware vendor—develops
financial software

3 Customer-developer link connotes both a channel (i.e., a medium for com-
munication) and a technique (i.e., a method for communication). From a
theoretical perspective these two dimensions may be separated, but from a
practical standpoint we chose not to do this because we found that develop-
ment managers themselves do not distinguish between the two dimensions.

surrogates. Intermediaries are entities situated
between customers and developers, while customer
surrogates are entities that are not true customers but
are treated as such for the purposes of gathering
requirements and feedback. Some links are inherent-
ly indirect because they do not typically allow for
direct contact between customers and developers.
The marketing and sales link (in which a salesperson
serves as an intermediary) is one example of this. In
other cases, the distinction is contextual and depends
on how the link is actually employed. User-interface
prototyping, for example, may be conducted with or
without the developers being present.

Methodology
Our study followed an inductive, multiple-case study
approach in which in-depth information was collect-
ed on actual software development projects. In 1994
we visited 17 companies and collected data about 31
different projects. Although the companies selected
represent a convenience sample we actively sought
out companies, within each environment, that repre-
sent variation along the dimensions of industry, appli-
cation area, and company size (Table 3 provides brief
descriptions of each firm). Thus, we believe that
there are enough companies and enough variance in
the sample to make reasonable inferences about the
range of methods that are currently being used to
obtain customer input.

At each company, a project or development man-
ager was selected as the primary contact for the study.
These managers were chosen (over customers) as the
primary subjects because of their ability to comment

on the full range of customer-developer links used
during the development process.

Each manager was asked to select two projects that
he or she had managed (or been closely involved with)
within the past few years. In selecting the projects, the
managers were instructed to pick one project that was
relatively successful and one project that was relatively
unsuccessful. Since there are many definitions of suc-
cess, we left it up to the development manager to
choose both the criteria for success and failure and the
project in each case. This approach served two
research objectives. First, it ensured that there would
be some variance with respect to the relative success of
the projects in our sample. Second, it allowed us to
sample paired cases in which organizational context
and some of the other factors that might affect the
success of a project were effectively controlled.4

The interviews were based on a structured inter-
view guide and survey focusing on the 15 different cus-
tomer-developer links presented in Table 2. The
interview guide included a page of definitions describ-
ing all of the links. These definitions were discussed
with the respondents during the course of the inter-
view thereby increasing the reliability of the survey. All
interviews were conducted by the authors and each
one lasted approximately two hours. The interviews
were tape-recorded and then later transcribed. Inter-
view transcripts were analyzed using a variation of the
pattern-matching technique advocated by Yin [16].5

COMMUNICATIONS OF THE ACM May 1995/Vol. 38, No. 5 37

C5
Company

Li
n

k
s

u
se

d
 a

s
a

 P
e

rc
e

n
ta

g
e

o
f

a
ll

 P
o

ss
ib

le
 L

in
k

s

More successful projects

Less successful projects

80

70

60

50

40

30

20

10

0
P1 P2 P3 P5 P8 P9 P10 P11 C1 C2 C3 C4 C6

The total number of links used in each project expressed as a percentage of the total number of links possible.
The denominator was normalized for the number of possible links in each category (13 for package development,
11 for custom development, as indicated in Table 2). Data were available for 14 paired cases involving a relatively
successful and a relatively unsuccessful project at each company (i.e., 28 projects in total).

Note:

Figure 1. Customer-developer links used: More successful projects vs. less successful projects

4 Three of the package firms do not have a “less successful’’ project pairing
because either the manager could not suggest one even after repeated prob-
ing, or because of interviewee time constraints.

Results and Lessons
Having described the basic approach used to collect
and analyze the data, we now turn our attention to
the results of the study. We present the results in the
form of three lessons for software development man-
agers. The first and second lessons are based on two
observations that held across both environments.
That similar findings emerged across such different
environments suggests that the lessons are likely to be
robust and applicable to a wide range of environ-
ments. The third lesson is a speculative one based on
differences that were observed between the custom
and package environments.

Lesson #1: The More Links the Better…
Up to a Point
The prescription that more links are better is based
on a strong correlation that was observed between
the number of links used and the relative success of
the project, as shown in Figure 1. While correlation
does not necessarily imply causality, we suggest that

managers should err on the side of providing more,
rather than fewer, links whenever possible.

Results of the analysis revealed that in 11 of the 14
paired cases, the more successful project involved a
greater number of links than the less successful project.
The mean number of customer-developer links used in

the 14 successful projects was 5.4 compared to a mean
of 3.2 in the 14 less successful projects. This difference
was found to be statistically significant in a paired t-test
(p<0.01). Additionally, a separate paired t-test for both
package and custom projects revealed that the same
pattern held across each environment (p<0.10).

The interviews with development managers offered
corroborating evidence of a relationship between a
project’s outcome and the number of links that were
used. At the end of some of the interviews, managers
were asked to comment on whether there was any
connection between the number of links and the rel-
ative success of the two projects they had described. In
several instances, the managers felt very strongly that
the dearth of links in the less successful projects was a
significant factor in explaining the less-than-favorable
outcome. In other cases, as one would expect, there
were other reasons offered as to why projects were
judged to be less successful.

Finally, the less successful projects suffered not
only from a low number of links but from a low num-

ber of direct links: 10 of the 14 less successful
projects involved either zero or just one
direct link between customer and developer.
As a result, we speculate that having multiple
direct links may be particularly important to
the successful communication of customer
requirements and hence to project success.

Determining How Many Links to Establish. An
intriguing issue that arises from our study is
to determine the minimum threshold of links
a project should have and the presumed
point of diminishing returns. Based on our
data, we suggest that managers should estab-
lish at least four customer-developer links,
but that by the time one reaches six to seven
links, there is a point of diminishing returns.

First, we examine the lower boundary:
since the mean number of links that were
observed in the less successful projects was
roughly three, one can infer that there may

be a threshold above three associated with the num-
ber of links needed to ensure adequate communica-
tion between customers and developers. As a rough
guideline, managers should probably regard four
links as a safe minimum.

Next, we examine the upper boundary. While Les-
son #1 states that more is better, the law of diminish-
ing marginal returns suggests that having too many
links may be sub-optimal. While each new link adds
more information, the marginal value of that infor-
mation drops off as the developers become more
aware of the customers’ requirements (see Figure 2).
Since the value of additional information is intangi-
ble, in practice it is not feasible for the manager to
quantify the precise point at which marginal benefits
equal marginal costs. Nevertheless, the data obtained

38 May 1995/Vol. 38, No. 5 COMMUNICATIONS OF THE ACM

Requirements Gathering

Figure 2. Establishing too many links
may be sub-optimal

V
a

lu
e

 o
f

e
a

c
h

 a
d

d
it

io
n

a
l

li
n

k
,

in
d

e
p

e
n

d
e

n
t

o
f

c
o

st

Number of Links (n)

5 The package cases and the custom cases were analyzed separately to look
for within-group patterns. Within each of these groups, the more successful
cases were then separated from the less successful cases and the pattern
matching process was continued. Finally, the patterns that were observed in
the package cases and the custom cases were compared to see if there were
any across-group patterns that emerged.

from the projects we studied provide some indication
of when the law of diminishing marginal returns is
likely to occur. We observed that even the successful
projects used a relatively small fraction of the available
links. In fact, very few of the 31 projects in our sample
used more than 60% of the possible links that can be
used to obtain customer input (see Figure 1). The
more successful projects used an average of 5.6 links
(s.d.=1.8, n=17). This suggests that the costs associated
with implementing additional links may exceed the
benefits, once we reach a half-dozen or so links.

Lesson #2: Reduce Reliance on Indirect Links:
Intermediaries and Customer Surrogates
Having discussed the number of links in Lesson #1,
we now turn to an issue concerning the use of direct
versus indirect links.6 Many of the development man-
agers that were interviewed perceived that the prob-
lems associated with less successful projects resulted,
at least in part, from over-reliance on intermediaries
or customer surrogates. It is on this basis that we sug-
gest managers reduce their reliance on indirect links,
substituting direct links between customers and
developers where possible.

There are at least two reasons why intermediaries
and surrogates are poor substitutes for direct links
between customer and developer. First, intermedi-
aries can intentionally or unintentionally filter and
distort messages. Second, intermediaries may not
have a complete understanding of customer needs.
The following comment from one of the develop-
ment managers illustrates the latter point:

The person who helped us define the requirements was an
MIS intermediary who had been involved with the program-
ming of [another application on the same hardware] in a
different area of the business. From a usability/functionali-
ty standpoint, the MIS intermediary didn’t have much
knowledge…she wasn’t a very good user [emphasis added]
because she didn’t understand the complexities of what they
were asking for.

As Grudin [6] observes, these “go-betweens or
mediators often discourage direct developer-user
contact…and are often ineffective conduits,’’ partic-
ularly for information involving new requirements. In
the context of surrogates, Grudin suggests that links
such as user groups will be less effective when meet-
ings are attended by “buyers rather than users and by

COMMUNICATIONS OF THE ACM May 1995/Vol. 38, No. 5 39

Table 4a. Custom Projects: Mean Rating of Common-
ly Used Customer-developer Links for More Successful
Projects* (1=very ineffective; 5=very effective)

Customer-
developer Link

Facilitated Teams

User-Interface
Prototyping

Requirements
Prototyping

Interviews

Testing

MIS Intermediary

Email/Bulletin Board

Mean
Rating

5.0

4.0

3.6

3.5

3.0

2.8

2.5

Number
of Projects

4

5

5

4

3

4

3

Table 4b. Packaged Software Projects: Mean Rating of
Commonly Used Customer-developer Links for More Suc-
cessful Projects* (1=very ineffective; 5=very effective)

6As mentioned earlier, indirect links are those in which the customer and
developer do not deal directly with one another but rather through inter-
mediaries or customer surrogates.

*Each link was rated for its effectiveness by the interviewee—measured on a 1–5 scale—in terms of “helping to improve the software product’’ (with 1 being
very ineffective and 5 being very effective). Data were available for ten successful packaged software projects and six successful custom software projects. Links
that were used in fewer than three projects were excluded from the analysis in order to minimize distortion in the averages. Nevertheless, the means should
be interpreted with caution given the small sample size. The less successful projects were excluded from this analysis because project managers had a ten-
dency to downgrade a customer-developer link if it was associated with a less successful project, creating a bias.

Customer-
developer Link

Support Line

Interviews

User-Interface
Prototyping

User Group

Requirements
Prototyping

Testing

Marketing and Sales

Trade Shows

Mean
Rating

4.3

3.8

3.3

3.3

2.8

2.8

2.8

2.5

Number
of Projects

8

6

3

4

4

6

9

4

marketers rather than developers.’’
In the remainder of this section, we present data in

support of Grudin’s observations and offer numerous
examples to illustrate some of the extraordinary num-
ber of ways in which indirect links can manifest them-
selves in actual practice. Based on this evidence, we
recommend that managers become more aware of
differences between direct and indirect links and act
to increase the relative effort devoted to direct links.

Intermediaries and Surrogates Are Widely Used but Poorly
Rated. In both the package and custom environments,
development managers spoke of the problems they
had encountered in relying too heavily on intermedi-
aries or customer surrogates. In many cases, the use of
such indirect links was viewed as a significant factor in
explaining why projects failed. The following remark
made by a development manager at C2, a large com-
puter company, illustrates this point:

The problem we had was we didn’t go out and survey the
people in the field, the end users…If we had gone right to the
end user and not relied on these intermediaries, I think it
would have made a difference [in the outcome of the project].

Paradoxically, despite the possible problems that
can result from the use of intermediaries and surro-
gates, the results of our study suggest that they are fre-
quently relied on in both the package and custom
environments—a finding that is consistent with previ-
ous observations made by Grudin [6]. In the custom
software environment, for example, MIS intermedi-

aries were used in 7 of the 12 projects in the sample,
despite, as we will discuss later, the fact that this link
was rated quite low in terms of helping to improve
the software product (see Table 4a). In the package
environment we also found a surprisingly heavy
reliance on indirect links. In some cases, elaborate
webs of intermediaries—as many as six layers—were
observed between customer and developer. Over
90% of the projects relied, at least in some way, on
the marketing and sales link for customer input and
requirements; but this link was rated “poor’’ by the
development managers, partially due to the tradi-
tional antipathy between the technical and sales func-
tions found in many firms.

Intermediaries and Surrogates Can Take Many Forms.
The landscape of customer-developer links is littered
with intermediaries and surrogates who can take many
forms. Eight examples from our data (including cases
from both the package and custom environments) are
described here; three involving intermediaries and
five involving the use of customer surrogates. While
we suspect that intermediaries and surrogates can
take forms other than those that are described here,
we offer these eight examples as a starting point to aid
managers in identifying and reducing their reliance
on intermediaries and surrogates.

• Systems analysts as intermediaries. At C2, a large com-
puter company, the facilitated team (JAD) sessions
were populated by systems analysts rather than actu-
al end users. The project manager explained:

40 May 1995/Vol. 38, No. 5 COMMUNICATIONS OF THE ACM

Requirements Gathering

Figure 3. Customer-developer link selections: Percentage of all (successful) projects
(in each category) that used a particular customer-developer link

Fa
ci

lit
at

ed
Te

am M
IS

In
te

rm
ed

ia
ry

Su
pp

or
t L

in
e

Su
rv

ey
Us

er
-in

te
rf

ac
e

pr
ot

ot
yp

in
g

Re
qu

ire
m

en
ts

pr
ot

ot
yp

in
g

In
te

rv
ie

w

Te
st

in
g

Em
ai

l/
bu

lle
tin

bo
ar

d
Us

ab
ilit

y
la

b
Ob

se
rv

at
io

na
l

st
ud

y
M

ar
ke

tin
g

an
d

sa
le

s
Us

er
 g

ro
up

Tr
ad

e
sh

ow
Fo

cu
s

gr
ou

p

100

90

80

70

60

50

40

30

20

10

0

Custom

Package

Occurrences of customer-developer links presented as a percentage of the projects for each category
(package and custom; n = 11 and n = 6, respectively).

Note:

Instead of bringing all the users to a JAD session, systems
analysts were sent out to the field so that they could come back
and represent a cross-section of the users. That’s basically the
way [our company] runs. I don’t think in my career at [C2]
I’ve ever dealt directly with the end user. There’s always
been some type of intermediary [emphasis added]. If it were
my decision, I would have gone directly to the end users.

The irony in this example is that the project team took
what would otherwise serve as a direct link that
encourages rich communication between customer
and developer and transformed it into an indirect link.

• Technical support personnel and VARs as intermedi-
aries. At P10, an established package developer,
there was a reliance on formal channels for estab-
lishing links to the customer. The development
manager at this firm noted that he relied heavily
on the “distribution chain,’’ made up principally
of value-added resellers (VARs) and the “support
chain,’’ representing the support line link. The
development manager noted that:

It would be pretty unlikely that we’d go and find a real
end user [emphasis added] and ask them what ought to be
fixed—there are just too many. I just attended a product
launch the other day and got accosted by a number of cus-
tomers who tried to buttonhole me to get their problems fixed.
That’s not the formal way.

• Internal consultants as intermediaries. P9, a developer
of complex enterprise-wide packages, has, like P10
in the preceding example, a formalized set of most-
ly indirect links to their customers. In order to sup-
port implementation of their complex products, a
separate services division within the company oper-
ates much as a consulting firm and bills for its time
accordingly. The development manager explained:

When it comes down to design work, we really consider
our consultants as users, because they have much more con-
tact with our users than developers themselves would.

• External consultants as surrogates. At C4, a major
hotel chain, a less successful project involved the
development of a new conference management
system. The system was designed to support the
company’s worldwide conference involving all of
the company’s franchisees. The problem was that
the company had never managed the conference
in-house; they had always contracted with an out-
side company that handled all of the conference
management tasks. As a result, the employee who
was designated to run the conference in-house—
and who would ultimately use the system—had lit-
tle or no experience in managing the conference.
This meant that the developers had to get the sys-
tem requirements from the consultant who had

managed the conference in previous years. The
net result was a system that did not satisfy the cus-
tomer. As the development manager recalled:

[The consultant] served as a surrogate user in all our
meetings. [The person] who would become the end user of our
system was at most of the meetings but she was kind of useless
to us in terms of giving us requirements because the year
before she had just done whatever this guy had told her to do.

• Non-representative customers as surrogates. At C3, a
major airline, a less successful project involved
the development of a new system to support tick-
et and gate agents. In determining the require-
ments for the new system, the project team
focused exclusively on international agents, even
though they knew that the system would eventual-
ly be used by both domestic and international
agents. Unfortunately, the international agents
served as poor surrogates for the much larger
population of domestic agents that the system was
also supposed to support.
• Supervisors as surrogates. This may be the most
common mistake in the custom environment. We
offer two examples. At C6, a large manufacturer
of electrical products, a less successful project
involved a customer support system that facilitat-
ed the centralization of distribution facilities. In
this case, the developers were instructed by man-
agement to gather requirements only from distri-
bution center supervisors rather than the workers
who would actually be using the new information
system. Ultimately, this decision meant that the
requirements were never adequately assessed
even though the development team emphasized
the use of what would normally be seen as an
effective direct link, namely facilitated team meet-
ings. The development manager explained:

We had union issues to deal with. We were actually shut-
ting down shipping facilities and consolidating them into
one distribution center. Plants were losing certain jobs. It was
all very hush hush…a secretive project. So the core group [of
supervisors] that continued to meet was instructed to keep this
under their hat and not to let it out [to the workers]. Unfor-
tunately, we never involved the people who would be using
the system. They were not aware of the project and there was
no ability for them to come back and say: “Hey, you haven’t
thought about this or that.’’ It was shoved down their throats.

At another company, the project manager explained
that a less successful project “got into trouble’’
because individuals who had been elevated to staff
positions were interviewed instead of actual end users:

The [surrogates] were people who used to be [in the field]
and had now moved into a staff position …They were sup-
posed to represent the needs of the users to the developers. The

COMMUNICATIONS OF THE ACM May 1995/Vol. 38, No. 5 41

thing that’s a little bit concerning about this is that some of
these people were three to five years removed from that function.

• Marketing personnel as surrogates. At P11, a soft-
ware division of a major computer hardware com-
pany, the marketing staff insisted that they knew
the customer requirements and demanded that
the developers obtain the requirements from
them rather than directly from the customers.
The development manager explained:

Our program management [marketing] people drive
product development and they said: “We’ll define the prod-
uct for you.’’ These are marketing people who have been in
the ranks for a number of years, believing they know the
product and understand customer requirements. They basi-
cally said: “Here are your requirements—build a product.’’
It was a dismal failure.

There was little or no customer involvement up front. I
told them [marketing] it was the wrong way to go and that
it was not meeting the primary objectives of the program. The
response was: “Then we’ll change the objectives.’’ The mar-
keting pressures were so great for this application that it
forced us to do the wrong things. I don’t think they [market-
ing] understood what the product should be.

• Developers as surrogates. P4, a small company that
produces software tools, developed a design phi-
losophy that can be stated as follows: since the
developers themselves routinely use the tools that
they sell, they are their own customers. There-
fore, the developers relied on themselves as surro-
gate users. The development manager explained:

The business of eliciting requirements from customers is
very difficult. If the [requirements] are your own require-
ments, it’s a lot easier. Your understanding outruns that of
your customer. Eliciting requirements was straightforward
because we were our own customers.

The preceding examples highlight some of the
many forms that intermediaries and customer surro-
gates can take and suggest some of the problems that
can result from relying too heavily on indirect links.

Lesson #3: Consider Links Not Traditionally
Used in Your Environment
Lesson #3 is based on differences that were
observed between the package and custom environ-
ments in the types of links most commonly used and
in managers’ perceptions of which links were most
effective.7 Specifically, our data suggest that the two
environments not only rely on different links but

that some of the links perceived to be most effective
are used almost exclusively in one environment and
not the other. We first present differences between
the two environments and then offer a set of inter-
pretations as to why these differences exist and
what implications they hold for development man-
agers. Based on the data, we suggest that develop-
ment managers in each of the two environments we
studied should consider using links not traditional-
ly used in their environment but which are per-
ceived to be particularly effective.

Differences in the Types of Links Selected. Figure 3 shows
a distinct difference in the use of particular links
across the two development environments (as sug-
gested by the “P’’ or “C’’ classification of Table 2). In
the custom software environment, prototyping (both
for requirements and for user interface), facilitated
teams, interviews, and MIS intermediaries were all
used quite commonly, appearing in more than two-
thirds of the custom projects. In the packaged soft-
ware environment, marketing and sales and support
line were the most commonly used links between cus-
tomers and developers. A number of links were used
in both types of project environments. For example,
some form of prototyping (either for requirements
or for user interface) was used in more than two-
thirds of both the package and custom projects. Inter-
views and testing links were also commonly used in
both environments.

Differences in Perception of Link Effectiveness. In addition
to the differences in link selection between the pack-
age and custom environments, there were also signifi-
cant differences in perceptions of link effectiveness, as
shown in Tables 4a and 4b. For the custom projects
the two highest-rated customer-developer links were
facilitated teams and user-interface prototyping.
These were the only links that received a mean rating
of 4 or higher. For the packaged software projects, the
two highest-rated customer-developer links were sup-
port line and interviews, with the former being the
only link that received a mean rating of 4 or higher.

Most interesting, perhaps, is that in each environ-
ment there is a “favorite’’ link that is hardly, if ever,
used in the other environment. The highest rated
customer-developer link for custom development
projects—facilitated teams—is not used by package
developers at all. Similarly, the highest rated cus-
tomer-developer link for packaged software pro-
jects—support lines—was seldom used for custom
projects.

It is particularly interesting to note that in the cus-
tom environment, the four links rated most effective
are all direct links. This was not true for the package
environment, where two of the four links rated most
effective were indirect links, namely support lines
and user groups.

42 May 1995/Vol. 38, No. 5 COMMUNICATIONS OF THE ACM

Requirements Gathering

7Interestingly, there was no statistically significant difference in the absolute
number of links used in package vs. custom software projects; the mean
number of customer-developer links used in the successful packaged soft-
ware projects was 5.7 as compared with a mean of 5.3 for the successful cus-
tom software projects.

Explaining the Differences Between the Two Environ-
ments. We suspect that the differences in link selec-
tion and perceived effectiveness can be largely
attributed to structural differences in the two envi-
ronments. Indeed, given the characteristics of the
custom environment noted in Table 1 (e.g., relative-
ly small number of customers that are often co-locat-
ed with the developers, and who can be identified
before development actually begins), it is not sur-
prising that a link such as facilitated teams can be
used effectively.

By the same logic, it should come as no surprise
that the support line link was the second most com-
monly occurring link in the package environment
and the one rated highest (in effectiveness) by devel-
opment managers in this environment. This is con-
sistent with previous studies [13, 14] and
underscores the important role that support lines
are believed to play in the development of packaged
software. As noted earlier, development managers in
the package environment are often confronted with
a much larger and more geographically dispersed
customer base, sometimes making it impossible to
identify customers in advance of development. The
support line provides a cost-effective way of reaching
such a customer base.

T
he differences in link selection
lead us to the question of what is
the implicit strategic objective of
link selection. Can these differ-
ences in link selection be
explained, as we have done, pre-
dominantly by the dispersed ver-
sus co-located customer base?

We posit that there is another explanation—that
what we observed is a case of market fit. Package
firms fit their customer-developer links to support
ongoing enhancements to existing products (new
releases) since their objective is to extend their
product life-cycle by constantly upgrading and
adding more functionality. At the same time, infor-
mation systems organizations developing custom
applications tune their links for initial development
with comparatively little emphasis placed on devel-
oping an ongoing relationship with customers. This
may be a legacy of the separation between new sys-
tem development and so-called maintenance. The
very term maintenance is misleading, yet it may sig-
nal an important distinction that exists between the
package and the custom environment with respect
to ongoing enhancement to existing software and
the corresponding need to establish links to sup-
port this activity.

The findings for package link selection present a
paradox that begs another question: How do pack-
aged software organizations successfully use support
lines—which might otherwise be viewed as a less

desirable indirect link—as a principal conduit for
information? We offer two explanations. First, direct
links may not be as necessary for conveying infor-
mation associated with enhancements to existing
products, an area of great concern for packaged
software developers.

Second, and more interestingly, we believe that
the answer lies in what we observed about how these
firms have elevated the status and relationship of
support personnel vis-a-vis development personnel.
Many of the development managers in our sample
spoke of their significant investment in support line
personnel, the high levels of trust they had in them,
their knowledge of the products, and in their ability
to collect customer input. For example, at both P1
and P3 (both packaged tool developers) the support
personnel maintained very close continuous contact
with the developers and were viewed by the devel-
opment managers as an extension of the develop-
ment team.

Implications for Development Managers. Given the dif-
ferences observed between the two environments,
and our interpretation of why those differences exist,
we believe the lesson for development managers is to
think broadly in selecting possible customer-devel-
oper links. While some links may be specific to a par-
ticular environment (e.g., trade shows), there is no
reason why other links would not be transferable
across the two environments that were studied.
Therefore, we believe that development managers
would do well to consider using links that have
evolved outside of their particular development envi-
ronment. Specifically, we recommend that develop-
ment managers in the package environment
consider using various facilitated team techniques as
a direct link that may be particularly useful in the
development of new software products or major
enhancements to existing products. Similarly, we
recommend that development managers in the cus-
tom environment focus more attention on using sup-
port lines of various types, as an indirect link to
support “maintenance’’ of existing software. As can
be learned from the packaged software environ-
ment, this strategy involves elevating the status of
these units and individuals.

Conclusions
To summarize briefly, the contribution of this study
was to introduce the notion that customer participa-
tion in software development requires the selection
of one or more customer-developer links through
which information can be exchanged. As an initial
step toward understanding link selection and use, an
exploratory study of 31 software development pro-
jects was undertaken to determine the perceived
effectiveness of various links and the extent to which
they are used in practice.

COMMUNICATIONS OF THE ACM May 1995/Vol. 38, No. 5 43

Three lessons can be drawn based on the results
of the study. First, using the link metric for customer
participation, we found that more successful projects
employed more links than did less successful pro-
jects. Hence, the first lesson is that managers should
err on the side of providing more links. Second, we
observed an abundance of indirect links among
many of the projects in our sample. The indirect
links were visible in the form of intermediaries
and/or customer surrogates that manifested them-
selves in a variety of different ways. We argue that
indirect links are less desirable to use because of
information filtering and distortion that can occur.
Consequently, our second lesson calls for reduced
reliance on indirect links.

Taken together, the first two lessons underscore
the notion that developers are best served by estab-
lishing numerous direct links through which infor-
mation can be exchanged between developers and
customers to enhance their mutual understanding.
This exchange of information cannot take place
when the number of links is small or when the chan-
nels are distorted by intermediaries.

The third lesson is based on an examination of the
differences between the two environments that we
studied, custom and packaged software. In each,
there was one link that was widely used and highly
rated in one environment, but rarely, if ever, used in
the other environment. Therefore, in a more specu-
lative vein we offer a third lesson: namely, that devel-
opment managers would do well to consider using
links that have evolved outside of their particular
development environment.

F
inally, given the intense interest in
customer participation in software
development from both practitioners
and from researchers, we propose
that the notion of customer-develop-
er links is an effective framework for
both. Practitioners can benefit by
stepping back and taking stock of the

links that are currently being used in their organiza-
tions. These links can be compared against the inven-
tory of links presented earlier to identify gaps and to
evaluate excessive reliance on indirect links.
Researchers, in turn, can use this approach as a first
step toward quantifying the study of user involvement
and participation using an objective measure that is
common across any development organization.

Acknowledgments.
The authors wish to acknowledge the helpful comments
provided by Joey George, Eph McLean, Karen
Holtzblatt and the reviewers on earlier drafts of this arti-
cle. We also want to thank the many development man-
agers who were willing to participate in the research and
share their experiences and insights with us.

References
1. Bostrom, R.P., and Heinen, J.S. MIS problems and failures: A

socio-technical perspective—part I: The causes. MIS Q. 1, 3
(1977), 17–32.

2. Byrd, T.A., Cossick, K.L., and Zmud, R.W. A synthesis of
research on requirements analysis and knowledge acquisition
techniques. MIS Q. 16, 1 (1992), 117–138.

3. Carmel, E., and Becker, S. A process model for packaged soft-
ware development. IEEE Trans. Eng. Manag. 41, 5 (1995).

4. Churchman, C.W., and Schainblatt, A.H. The researcher and
the manager: A dialectic of implementation. Manag. Sci. 11, 4
(1965), B69–B87.

5. Daft, R.L., Lengel, R.H., and Trevino, L.K., Message equivocal-
ity, media selection, and manager performance: Implications
for information systems. MIS Q. 11, 3 (1987), 353–366.

6. Grudin, J. Interactive systems: Bridging the gaps between devel-
opers and users. IEEE Comput. 24 (Apr. 1991), 59–69.

7. Hirschheim, R., and Klein, H.K. Realizing emancipatory prin-
ciples in information systems development: The case for
ETHICS. MIS Q. 18, 1 (1994), 83–109.

8. Ives, B., and Olson, M.H., User involvement and MIS success: A
review of research. Manag. Sci. 30, 5 (1984), 586–603.

9. Kochan, T., Cutcher-Gershenfeld, J., and MacDuffie, J.P. Employ-
ee Participation, Work Redesign and New Technology: Implications for
Public Policy in the 1990s. Commission on Workforce Quality and
Labor Market Efficiency, U.S. Department of Labor, May 1989.

10. Lees, J.D. Successful development of small business informa-
tion systems. J. Syst. Manag. 38, 8 (1987), 32–39.

11. Mumford, E., and Henshall, D. A Participative Approach to Com-
puter Systems Design. Associated Business Press, London, 1979.

12. Schuler, D., and Namioka, A. Participatory Design: Principles and
Practice. Erlbaum, Hillsdale, NJ, 1993.

13. Software Industry 1993 Business Practices Survey. Price Water-
house, 1984.

14. von Hellens, L.A. Conditions for Success in the Design and
Implementation of Packaged Software: A Study of Accounting
Software for Small Companies in the United Kingdom. Ph.D dis-
sertation, Oxford Institute of Information Management, 1990.

15. Von Hippel, E. Lead users: A source of novel product concepts.
Manag. Sci. 32, 7 (1986), 791–805.

16. Yin, R.K. Case Study Research: Design and Methods. Sage, Beverly
Hills, CA, 1984.

About the Authors:
MARK KEIL is an assistant professor of Computer Information Sys-
tems in the College of Business Administration at Georgia State
University. Current research interests include software project
management, user involvement, and implementation issues associ-
ated with information systems. Author’s Present Address: CIS
Department, Georgia State University, P.O. Box 4015, Atlanta, GA
30302-4015; email: cismmk@gsusgi2.gsu.edu

ERRAN CARMEL is an assistant professor at The American Uni-
versity in Washington D.C. Current research interests include
development practices in packaged software organizations and the
international competitive implications of these practices. Author’s
Present Address: Kogod College of Business Administration, The
American University, Washington D.C. 20016-8044; email:
ecarmel@american.edu

Permission to copy without fee all or part of this material is granted provid-
ed that the copies are not made or distributed for direct commercial advan-
tage, the ACM copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

©ACM 0002-0782/95/0500 $3.50

44 May 1995/Vol. 38, No. 5 COMMUNICATIONS OF THE ACM

Requirements Gathering

C

