
Professor Hausi A. Müller PhD PEng FCAE

Department of Computer Science
Faculty of Engineering

University of Victoria

http://www.engr.uvic.ca/~seng321/
https://courses1.csc.uvic.ca/courses/201/spring/seng/321

2

SEN
G

 321
C

alendar

Announcements
 S2 & C2

 Posted
 S2 number of pages
 Prototype sophistication

 Fri, March 4
 S2a due

 Tue, March 8
 S2b due
 Presentations in labs
 Attendance required

 Thu, March 10
 C2 due
 Feedback on S2a & S2b

3

 Final Exam
 Sat, April 16
 19:00-22:00
 ECS 125

The S2b Show
Prep

 5 - 7 polished slides (at most) in pptx, ppt, or pdf form
 Send slides to submit@rigiresearch.com by Monday — 11:55 pm
 Team number (e.g., Team 7) on every slide
 Order of presentation arranged by TAs

Developers presentation
 Entire group must be on stage
 7 min  Presentation
 2 min  Questions
 Presenters: 1-4 people

Customers questions
 Entire group must be on stage
 Customers must ask two “good” questions

Audience
 Must evaluate every developer presentation using evaluation form

4

Evaluation Form

5

Validation vs. Verification
 Validation — Evaluate software requirements specification

wrt. customer requirements:
 Are we building the right system?
 Is the specification what the customer wants?

 Verification — Evaluate software artifact wrt. existing
artifacts:
 Are we building the system right?
 For example, does the design

implement the spec?
Thus, validation is concerned with checking that the system will meet the
customer’s actual needs, while verification is concerned with whether the
system is well-engineered, error-free, and so on. Verification will help to
determine whether the software is of high quality, but it will not ensure
that the system is useful. 6

Validation vs. Verification

7

www.easterbrook.ca/steve/2010/11/the-difference-between-verification-and-validation/

Steve Easterbrook
University of Toronto

Validation Criteria
 Validation criteria include:
 Correctness
 (Un)ambiguity
 Completeness
 Consistency

 We are checking:
 Whether the software requirements specification

captures stakeholders’ requirements
 User satisfaction that the system as specified will

meet their needs, is usable and useful

8

Classic Quality Criteria
for a Requirements Specification
Requirements Spec
Properties

Interpretation

Correct Each requirement reflects a need
Complete All necessary requirements included
Unambiguous All parties agree on meaning
Consistent All parts match, e.g., E/R and event list
Ranked for importance and
stability

Priority and expected changes per
requirement

Modifiable Easy to change, maintaining consistency
Verifiable Possible to see whether requirement is met
Traceable To goals/purposes, to design/code
Understandable By customers and developers
Necessary AND Feasible

9
From: Soren Lauesen:
Software Requirements
© Pearson / Addison-Wesley 2002

Desirable Characteristics
for a Requirements Specification
Requirements Spec Properties Interpretation

Clear, concise and understandable Easy to read and acts as a good
communication tool for stakeholders

Unambiguous Single interpretation which cannot be
misunderstood

Checkable (complete, consistent) Can be checked for errors
Consistent All parts match, e.g., E/R and event list
Testable / verifiable / measurable Can easily verify if we met the

requirements

Traceable Contains rationale and requirements are
linked back to business rules and
priorities

10
From: Soren Lauesen:
Software Requirements
© Pearson / Addison-Wesley 2002

Characteristics High Quality
Requirements Specifications
Requirements Spec Properties Interpretation
Correct Should involve customers to ensure you

get the correct requirements, instead of
developers guessing; should not contradict
other requirements

Feasible Should be feasible using known limitations
and capabilities; need to have a developer
involved to provide a reality check

Necessary Each requirement should originate from an
authoritative source

Prioritized
Unambiguous

Verifiable

11
From: Soren Lauesen:
Software Requirements
© Pearson / Addison-Wesley 2002

Validation Challenges

 In a typical project, there exist few documents
that can be used as the basis for validation 

 When validating a specification, we are validating
it against the stakeholders’ requirements.
 Some of these may not be documented!
 If they are documented, they are probably expressed in

natural language
  open to multiple interpretations

 In short, validating a document is a time intensive
and error-prone process.

12

Validation Techniques

 Reviews
 Walkthroughs
 Formal inspections
 Focused inspections
 Active inspections
 Checklists

 Testing
 Prototyping
 Formal validation

13

Reviews

 Actively used in industry
 One of the most successful techniques
 Basic idea
 Humans (often semi-outsiders) read and analyze

artifacts, look for problems, meet to discuss these
problems, and agree on a set of actions to address
the identified problems.

 Often, they will have a good idea of likely problem
areas both inside and outside problem domain.

 Need both domain experts and domain-ignorant
developers.

14

Reviews
 Broad industrial consensus: Reviews work!

 They find more errors than testing does.
 They find errors faster than testing does.
 Everyone believes in them, even Microsoft.

 Requirements reviews are the most widely used
technique of requirements validation.

15

Reviews work: One of the great
industrial success stories !!!!!!!!!

Advantages and Disadvantages
of Reviews
 Advantages
 Can review all kinds of software artifacts, not just code,

e.g., specs, test suites, design docs
 Helps catch errors sooner when they are much cheaper

to fix!
 Good for educating newcomers—brings the entire

development team together into the big picture
 Disadvantages
 It is though work that is time-consuming and expensive

which requires preparation, paperwork, follow-ups
 But it is usually cheaper than the alternatives!

16

Social Problems with Reviews
 Reviewers are usually software developers who

have their own work they need to do as opposed
to professional reviewers
 Reviewers have their own deadlines and will give their

own work higher priority.
 Assigning concrete responsibilities to reviewers and /

or taking an “egoless” (product centered, group buy-
in) approach often works, but is difficult to realize

 Why not have the author act as reviewer?

17

