
Professor Hausi A. Müller PhD PEng FCAE

Department of Computer Science
Faculty of Engineering

University of Victoria

www.engr.uvic.ca/~seng321/
courses1.csc.uvic.ca/courses/201/spring/seng/321

2

SENG 321 Calendar

Announcements
 Thu, March 10

 C2 due
 Feedback on S2a & S2b

 Tue, March 15
 C3a due
 Detailed technical design
 NOT A MANUAL (!)

3

 Final Exam
 Sat, April 16
 19:00-22:00
 ECS 125

 Quiz 2
 Fri, March 11
 In class
 Requirements engineering

ethics

Search for APEGBC
Code of Ethics

4

Software Engineering Code of
Ethics and Professional Practice

 Software engineers shall commit themselves to making the analysis, specification, design,
development, testing and maintenance of software a beneficial and respected profession. In
accordance with their commitment to the health, safety and welfare of the public, software
engineers shall adhere to the following Eight Principles:

1. PUBLIC - Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the best

interests of their client and employer consistent with the public interest.
3. PRODUCT - Software engineers shall ensure that their products and related modifications

meet the highest professional standards possible.
4. JUDGMENT - Software engineers shall maintain integrity and independence in their

professional judgment.
5. MANAGEMENT - Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and maintenance.
6. PROFESSION - Software engineers shall advance the integrity and reputation of the

profession consistent with the public interest.
7. COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.
8. SELF - Software engineers shall participate in lifelong learning regarding the practice

of their profession and shall promote an ethical approach to the practice of the
profession.

5

http://www.acm.org/about/se-code

Exercise
 Explain to each other what the four blue software

engineering code of ethics (SE-COE) bullets mean

 Pick your favorite SE-COE point:
 Explain to each other how you have adhered to one of

these ethics points so far in this course
 Explain how you have violated one of these ethics

points so far in this course

6

Quiz Question
• ExpertTesters is a software testing company.
• Typically, ExpertTesters is hired by various real-time system

companies to perform tests on their products in order to verify that
the products are manufactured according to published standards.

• You are a professional engineer and have been employed for several years on a
fulltime basis as an employee of ExpertTesters. In your job, you are responsible
for supervising the application of tests on real-time systems. During your years of
employment with ExpertTesters you have acquired a great deal of expertise
regarding the design of real-time applications and earned a great reputation.

• Given your reputation and expertise, companies of such systems are often
interested in hiring you on a private basis (i.e. outside of your employment with
ExpertTesters) to provide input on their product designs.

• You are able to supplement your income by occasionally undertaking such work
for them. You perform this work on weekends and during evenings.

• One day, while at work at ExpertTesters, you are assigned the job of supervising
the tests and issuing a report on a new product that has been submitted to
ExpertTesters. You realize that the product was submitted by one of your own
manufacturing clients and that you provided design input on the product.

7

8

Telecommunications Code
Inspection Experience
 Note that this refers to code inspections not requirements

specification inspection
 However, the review techniques discussed here apply to both code

and SRS inspections
 20 MLOC of source code over 10 years. DMS digital switching

software is about 10 MLOC.
 They inspected 2.5 MLOC, 8 releases over 2 years.
 They found 0.8 – 1.0 errors per person-hour by inspection,

which is 2 to 4 times more effective than testing.
 They found about 37 errors per KLOC

 Other studies found 50–95 errors per KLOC
 Error types

 50% incorrect statements
 30% missing statements
 20% extra statements

9

Telecommunications Code
Inspection Experience

 An error diagnosed in released software takes
33 person-hours to diagnose and repair.
 An error detected by a customer after release is

sometimes called an escalation and is very
expensive to fix.

 Their coders typically produce 3 to 5 KLOC of
finished, documented code per person-year.

10

Review Techniques

 Reading and signing off
 Walkthroughs
 Formal inspections
 Focused inspections
 Active reviews
 Checklists

11

Focused Inspections
 In a focused inspection, reviewers have roles and each

reviewer looks only for specific types of errors.
 Focused inspections help avoid the problem of reviewers not

having the time to read the whole document.
 The leader can assign each reviewer tasks appropriate

to the skills of the reviewer.
 A reviewer who is an expert on the requirements can look for

missing and wrong requirements.
 A UML expert can look for modeling errors and not be an expert

about the system’s requirements.
 Those who are skilled at and enjoy finding inconsistencies

(general purpose pedants), and who may not be experts on
anything in particular, can be set loose to identify inconsistencies.

12

Review Techniques

 Reading and signing off
 Walkthroughs
 Formal inspections
 Focused inspections
 Active reviews
 Checklists

13

Active Reviews

 Inspection process where reviewers (who are
often outsiders) act as users of the artifact.

 Authors pose questions that require reviewers to
use artifact to answer.

14

Active Reviews
 Ask reviewer to use the specification [Parnas]

 In this case, the author poses questions for the
reviewer to answer that can be answered only
by reading the requirements specification.

 Not only does this force the reviewer to do the
work, but it also exercises the SRS.
 Give each reviewer a different set of scenarios and

ask him / her to walk through each scenario with the
specification, to make sure that the specification
handles the system’s role in each scenario.

15

Example of Active reviews

 For each of the access functions, the reviewer
should answer the following questions:

1. Which assumptions tell you that this function can be
implemented as described?

2. Under what conditions may this function be applied?
Which assumptions described those conditions?

3. Is the behaviour of this function (its effects on other
functions) described in the assumptions?

16

17

Advantages of Inspection
 More effective than testing for finding bugs:
 Inspections find the causes of errors (e.g., key / k)
 Testing finds the symptoms of errors (e.g., program

crashes)
 Authors write their software requirements

documents expecting others to be able read
and understand the documents
 Often improves work habits!
 Author learns from inspections what makes

documents understandable.

18

Advantages of Inspection
 Author often develops “blind spots” or “tunnel vision”

about his/her documents:
 Fresh eyes may spot errors/flaws more easily

 Important
 Having to explain something is an excellent way to learn it!
 Simple, doable, only costs time and effort

 Some very impressive experiences
 Unlike many other claimed software process improvements

they have high credibility.
 The goal is detection and product improvement NOT

evaluation, scorekeeping, management spot checks
 It’s OK to be wrong.

19

Advantages of Inspection

 Side effects
 Fosters group buy in, team building.

 Everyone will be familiar with the system
 Encourages handing down of corporate knowledge

from old hands to new people
 Encourages adherence to documentation and coding

standards for common vocabulary and expectations
 (Ideally) reduces time needed for testing, with less

overall effort

20

Potential Problems of Inspections
 Personality problems

 Person with good ideas may not express them well
 Person with bad ideas may dominate
 Some people dislike disagreements; others

love arguing for argument’s sake
 Holy wars—sometimes people have fundamentally

irreconcilable points of view
 Semi-colon wars—easy to get lost in trivial matters

 Office politics
 All comments get logged formally; you can get back at

people you don’t like—on the record
 But, the author’s boss should not be present

 It is draining—loses effectiveness after a couple of hours

21

Variations in Inspections
 Amount of structure and formality in process

varies widely
 Go through line-by-line
 Everyone has to read documents beforehand
 Report only problem spots
 Asynchronous reviews

 Web-based techniques
 Put documents on the intranet
 Reviewers can be geographically distributed, different

time zones
 Review asynchronously or via groupware

 Groupware also called Computer Supported Cooperative Work
(CSCW) tools

22

Review Techniques

 Reading and signing off
 Walkthroughs
 Formal inspections
 Focused inspections
 Active reviews
 Checklists

23

Inspection
C

hecklists

24

Inspection Moderator’s Checklist
[Wiegers]
 Things to Bring to the Inspection Meeting

 Inspection summary report
 Inspection identification
 Work product description
 Inspector names and roles
 Pages or lines of code planned for inspection
 Total overview effort
 Planning effort filled in

 Typo list for participants to share
 Issue log for the recorder
 Inspection Lessons Learned questionnaire
 Attention-getting device (e.g., gavel, mallet, whistle)
 Easel paper and markers for action items and other issues that come up
 Appropriate work product defect checklist or rule set
 For a re-inspection, the issues list from the previous inspection

25Copyright © 2001 by Karl E. Wiegers.
Permission is granted to use, modify, and distribute this document.

Inspection Moderator’s Checklist
[Wiegers]
 At the start of the inspection meeting

 Introductions. Identify the moderator, author, and the individuals performing
the reader and recorder roles. Announce the work product being inspected
and state the author’s inspection objectives.

 Author created this product and asked us to help make it better. Please
focus your comments on improving the product. Look beneath the
superficial minor defects or style issues, to hunt out significant defects. If
you aren’t sure, point it out and we’ll decide as a team.

 Our goal is to identify defects, not devise solutions. In general, permit about
1 minute of discussion on an issue to see if it can be resolved quickly. If
not, ask that it be recorded. Typos or small cosmetic problems should be
recorded on the typo list, rather than come up in the discussion.

26Copyright © 2001 by Karl E. Wiegers.
Permission is granted to use, modify, and distribute this document.

Inspection Moderator’s Checklist
[Wiegers]
 At the start of the inspection meeting

 Only one person to speak at a time; no sub-meetings. Explain the attention-getting
device. Ask inspectors to respect the moderator’s interruption role.

 Author to ascertain that everybody has the same version of the document being
inspected.

 At the end of the meeting, decide what our appraisal of this product is: accepted as
is, accepted conditionally, re-inspection needed, or inspection not completed.
Describe how the group will make the appraisal decision (e.g., 5% rule). Take a few
mins to discuss lessons learned from the inspection at the end of the meeting.

 Record everyone’s preparation time on the inspection summary report and add them
up to get the total preparation effort. Judge whether it is sufficient to proceed with the
meeting or whether you should reschedule it.

 Ask for any positive comments they wish to make about the initial deliverable. For
any global observations that pertain to the entire document.

27Copyright © 2001 by Karl E. Wiegers.
Permission is granted to use, modify, and distribute this document.

Inspection Moderator’s Checklist
[Wiegers]
 At the end of the inspection meeting

 Prepare product appraisal and record it on the inspection summary report.
 If the appraisal was “accepted conditionally”, determine who will peform

follow-up
 Record the actual pages or lines of code inspected.
 Collect lessons learned from this inspection.
 Remind inspectors to pass their typo lists to the author before they leave.
 If a separate action items list was generated, deliver it to the appropriate

individual(s).
 Record the total number of major and minor defects found, and the number

of major and minor defects corrected from the author.
 Enter defect and issue details into inspection database.

28Copyright © 2001 by Karl E. Wiegers.
Permission is granted to use, modify, and distribute this document.

Inspection Checklists
[Karl Wiegers]
 Completeness

 Does the document contain all the information called out in the outline for the SRS
(e.g., IEEE SRS standard)?

 Do requirements exhibit a clear distinction between functions and data?
 Do requirements exhibit a clear distinction between functional and none-functional

requirements?
 Are there sufficient use cases included?
 Are there areas not addressed in the SRS that need to be?
 Do the requirements exhibit the different stakeholder groups?
 Do the requirements exhibit the different domains involved?
 Have the real-time constraints been specified in sufficient detail?
 Has the precision and accuracy of calculations been specified?

 User interface
 Do requirements define all the information to be displayed to users?
 Can the user specify preferences? Statically, dynamically?
 Are there sufficient use cases included?
 Do requirements address system and user response to error conditions and

exceptions?

29

Inspection Checklist
[Karl Wiegers]
 Ambiguity and consistency

 Is each requirement stated clearly, concisely, and unambiguously?
 Validation and verification

 Is each requirement testable, verifiable, and traceable?
 Is it possible to develop a thorough set of tests based on the information

contained in the SRS? If not, what information is missing?
 Tacit knowledge

 Are there ambiguous or implied requirements”
 Have assumptions and dependencies been clearly stated?

 Complexity
 If the requirements involve complex decision chains, are they expressed in a form

that facilitates comprehension (i.e., decision tables or decision trees)?
 Are there conflicting requirements?

 Adaptation
 Are there requirements for software upgrades?
 Are there requirements for dynamic adaptation?

 Unessessary constraints
 Are there requirements that contain an unnecessary level of design detail?
 Are there unnecessary “what”, “when”, “implementation” details?

30

General SRS Checklist
 Is a functional overview of the system provided?
 Are sufficient UML diagrams included?
 Have the software and hardware environments been

specified?
 Is there a clear delineation between the system and its

environment?
 If assumptions that affect implementation have been

made, are they stated?
 Has every acronym, constant, variable, and timeout

been defined in the Data Dictionary?
 Are all the requirements, interfaces, constraints, or

definitions listed in the appropriate sections?
31

Structure Check
 Does the specification contain:

 A number or ID for each requirement for ease of reference
 Verifiable requirements
 Purpose of each requirement
 Use cases
 Examples of ways to meet requirement
 Plain-text explanation of diagrams
 Importance and stability for each requirement
 Cross refs rather than duplicate information
 Index
 An electronic version

32From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Interface Checklist
 Are all inputs to the system specified, including their

source, accuracy, range of values, and parameters?
 Are all outputs from the system specified, including their

destination, accuracy, range of values, parameters and
format?

 Are all screen formats specified?
 Are all report formats specified?
 Are all interface requirements between hardware,

software, personnel, and procedures included?
 Are all communication interfaces specified, including

handshaking, error-checking, and communication
protocols?

33

