
3/12/2016

1

Professor Hausi A. Müller PhD PEng FCAE

Department of Computer Science
Faculty of Engineering

University of Victoria

www.engr.uvic.ca/~seng321/
courses1.csc.uvic.ca/courses/201/spring/seng/321

2

SENG 321 Calendar

Announcements
 Thu, March 10

 C2 due

 Feedback on S2a & S2b

 Fri, March 18

 S3a due

 Detailed technical design

 Include ethics
requirements

 NOT A MANUAL (!)

3

 Final Exam
 Sat, April 16
 19:00-22:00
 ECS 125

 Quiz 2
 Fri, March 11 (today)
 In class
 Requirements engineering

ethics

Search for APEGBC
Code of Ethics

4

Software Engineering Code of
Ethics and Professional Practice

 Software engineers shall commit themselves to making the analysis, specification, design,
development, testing and maintenance of software a beneficial and respected profession. In
accordance with their commitment to the health, safety and welfare of the public, software
engineers shall adhere to the following Eight Principles:

1. PUBLIC - Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the best
interests of their client and employer consistent with the public interest.

3. PRODUCT - Software engineers shall ensure that their products and related modifications
meet the highest professional standards possible.

4. JUDGMENT - Software engineers shall maintain integrity and independence in their
professional judgment.

5. MANAGEMENT - Software engineering managers and leaders shall subscribe to and
promote an ethical approach to the management of software development and maintenance.

6. PROFESSION - Software engineers shall advance the integrity and reputation of the
profession consistent with the public interest.

7. COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.

8. SELF - Software engineers shall participate in lifelong learning regarding the practice
of their profession and shall promote an ethical approach to the practice of the
profession.

5

http://www.acm.org/about/se-code

Review Techniques

 Reading and signing off

 Walkthroughs

 Formal inspections

 Focused inspections

 Active reviews

 Checklists

6

3/12/2016

2

In
sp

ectio
n

C
h

ecklists

7

Inspection Moderator’s Checklist
[Wiegers]

 Things to Bring to the Inspection Meeting
 Inspection summary report

 Inspection identification

 Work product description

 Inspector names and roles

 Pages or lines of code planned for inspection

 Total overview effort

 Planning effort filled in

 Typo list for participants to share

 Issue log for the recorder

 Inspection Lessons Learned questionnaire

 Attention-getting device (e.g., gavel, mallet, whistle)

 Easel paper and markers for action items and other issues that come up

 Appropriate work product defect checklist or rule set

 For a re-inspection, the issues list from the previous inspection

8Copyright © 2001 by Karl E. Wiegers.
Permission is granted to use, modify, and distribute this document.

Inspection Moderator’s Checklist
[Wiegers]
 At the start of the inspection meeting

 Introductions. Identify the moderator, author, and the individuals performing
the reader and recorder roles. Announce the work product being inspected
and state the author’s inspection objectives.

 Author created this product and asked us to help make it better. Please
focus your comments on improving the product. Look beneath the
superficial minor defects or style issues, to hunt out significant defects. If
you aren’t sure, point it out and we’ll decide as a team.

 Our goal is to identify defects, not devise solutions. In general, permit about
1 minute of discussion on an issue to see if it can be resolved quickly. If
not, ask that it be recorded. Typos or small cosmetic problems should be
recorded on the typo list, rather than come up in the discussion.

9Copyright © 2001 by Karl E. Wiegers.
Permission is granted to use, modify, and distribute this document.

Inspection Moderator’s Checklist
[Wiegers]
 At the start of the inspection meeting

 Only one person to speak at a time; no sub-meetings. Explain the attention-getting
device. Ask inspectors to respect the moderator’s interruption role.

 Author to ascertain that everybody has the same version of the document being
inspected.

 At the end of the meeting, decide what our appraisal of this product is: accepted as
is, accepted conditionally, re-inspection needed, or inspection not completed.
Describe how the group will make the appraisal decision (e.g., 5% rule). Take a few
mins to discuss lessons learned from the inspection at the end of the meeting.

 Record everyone’s preparation time on the inspection summary report and add them
up to get the total preparation effort. Judge whether it is sufficient to proceed with the
meeting or whether you should reschedule it.

 Ask for any positive comments they wish to make about the initial deliverable. For
any global observations that pertain to the entire document.

10Copyright © 2001 by Karl E. Wiegers.
Permission is granted to use, modify, and distribute this document.

Inspection Moderator’s Checklist
[Wiegers]

 At the end of the inspection meeting
 Prepare product appraisal and record it on the inspection summary report.

 If the appraisal was “accepted conditionally”, determine who will peform
follow-up

 Record the actual pages or lines of code inspected.

 Collect lessons learned from this inspection.

 Remind inspectors to pass their typo lists to the author before they leave.

 If a separate action items list was generated, deliver it to the appropriate
individual(s).

 Record the total number of major and minor defects found, and the number
of major and minor defects corrected from the author.

 Enter defect and issue details into inspection database.

11Copyright © 2001 by Karl E. Wiegers.
Permission is granted to use, modify, and distribute this document.

Inspection Checklists
[Karl Wiegers]

 Completeness
 Does the document contain all the information called out in the outline for the SRS

(e.g., IEEE SRS standard)?
 Do requirements exhibit a clear distinction between functions and data?
 Do requirements exhibit a clear distinction between functional and none-functional

requirements?
 Are there sufficient use cases included?
 Are there areas not addressed in the SRS that need to be?
 Do the requirements exhibit the different stakeholder groups?
 Do the requirements exhibit the different domains involved?
 Have the real-time constraints been specified in sufficient detail?
 Has the precision and accuracy of calculations been specified?

 User interface
 Do requirements define all the information to be displayed to users?
 Can the user specify preferences? Statically, dynamically?
 Are there sufficient use cases included?
 Do requirements address system and user response to error conditions and

exceptions?

12

3/12/2016

3

Inspection Checklist
[Karl Wiegers]

 Ambiguity and consistency
 Is each requirement stated clearly, concisely, and unambiguously?

 Validation and verification
 Is each requirement testable, verifiable, and traceable?
 Is it possible to develop a thorough set of tests based on the information

contained in the SRS? If not, what information is missing?

 Tacit knowledge
 Are there ambiguous or implied requirements”
 Have assumptions and dependencies been clearly stated?

 Complexity
 If the requirements involve complex decision chains, are they expressed in a form

that facilitates comprehension (i.e., decision tables or decision trees)?
 Are there conflicting requirements?

 Adaptation
 Are there requirements for software upgrades?
 Are there requirements for dynamic adaptation?

 Unessessary constraints
 Are there requirements that contain an unnecessary level of design detail?
 Are there unnecessary “what”, “when”, “implementation” details?

13

General SRS Checklist

 Is a functional overview of the system provided?
 Are sufficient UML diagrams included?
 Have the software and hardware environments been

specified?
 Is there a clear delineation between the system and its

environment?
 If assumptions that affect implementation have been

made, are they stated?
 Has every acronym, constant, variable, and timeout

been defined in the Data Dictionary?
 Are all the requirements, interfaces, constraints, or

definitions listed in the appropriate sections?
14

Structure Check

 Does the specification contain:
 A number or ID for each requirement for ease of reference
 Verifiable requirements
 Purpose of each requirement
 Use cases
 Examples of ways to meet requirement
 Plain-text explanation of diagrams
 Importance and stability for each requirement
 Cross refs rather than duplicate information
 Index
 An electronic version

15From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Interface Checklist

 Are all inputs to the system specified, including their
source, accuracy, range of values, and parameters?

 Are all outputs from the system specified, including their
destination, accuracy, range of values, parameters and
format?

 Are all screen formats specified?
 Are all report formats specified?
 Are all interface requirements between hardware,

software, personnel, and procedures included?
 Are all communication interfaces specified, including

handshaking, error-checking, and communication
protocols?

16

Class Diagram Checklist

 Have the multiplicities of all associations been
considered?

 Are each object’s attributes really data values?
 Attributes that are objects themselves should be

modeled using aggregation.

 Have generalizations of objects been
considered?

 Are each object’s operations really operations
on the object’s attributes?
 Operations invoked by the object’s dynamic model are

often operations on another object’s data.
17

Statechart Checklist

 Are there any state-transitions that can never
occur (because the event never occurs)?

 Are all remote operations (of other objects)
invoked as either an action or a message?

 Are all attributes used declared in the object
model?

 Are all operations called declared in the object
model?

 Do all superstates have an initial state?
 Have special states (e.g., abnormal termination)

been considered?

18

3/12/2016

4

Non-Behavioural
Requirements Checklist

 Is the expected response time (from user’s point of view)
specified for all operations?

 Is the level of security specified?
 Is the reliability specified, including the consequences of

software failure, the vital information that needs to be
protected from failure, and the strategy for error
detection and recovery?

 Is the maximum memory specified?
 Is the maximum storage specified?
 Are planned changes specified (i.e., maintainability)?
 Are acceptable trade-offs between competing non-

behavioral properties specified?
19

