
3/16/2016

1

Professor Hausi A. Müller PhD PEng FCAE

Department of Computer Science
Faculty of Engineering

University of Victoria

www.engr.uvic.ca/~seng321/
courses1.csc.uvic.ca/courses/201/spring/seng/321

2

SENG 321 Calendar

Announcements
 Fri, March 18

 S3a due

 Detailed technical design

 Include ethics
requirements

 NOT A MANUAL (!)

3

Final Exam
 Sat, April 16
 19:00-22:00
 ECS 125

CRUD Technique

 Key data operations
 Create

 Read

 Update

 Delete

 Identify use cases that support CRUD operations

 Check data entities or domain classes
 Customer, OrderItem

4

CRUD: Modeling Data and Process
Interactions―E-Commerce

5

Ta
sk

s,
 p

ro
ce

ss
es

Entities

CRUD Matrix—Hotel Room Booking
Create, Read, Update, Delete, Overview

6

3/16/2016

2

CRUD Matrix—Hotel Room Booking
Create, Read, Update, Delete, Overview

7

Book

CheckinBooked

CheckinNonbkd

Checkout

ChangeRoom

RecordService

PriceChange

G
ue

st

St
ay

R
oo

m

R
oo

m
St

at
e

Se
rv

ic
e

Se
rv

ic
eT

yp
eEntity

Task

CRUD Matrix—Hotel Room Booking
Create, Read, Update, Delete, Overview

8

Book C U O C O U O

CheckinBooked RU U O O U O

CheckinNonbkd C U O C O U O

Checkout U U O R U

ChangeRoom R R O U O

RecordService O C R

PriceChange C UDO C UDO

G
ue

st

St
ay

R
oo

m

R
oo

m
St

at
e

Se
rv

ic
e

Se
rv

ic
eT

yp
eEntity

Task

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

CRUD Matrix
Create, Read, Update, Delete, Overview

 Develop a CRUD matrix for your project
 Five entities

 Five tasks

 Fill in matrix with letters
 Create: C

 Read: R

 Update: U

 Delete: D

 Overview: O
9

Excellent Final Question

Another CRUD Matrix Example

10

Validation Techniques

 Reviews
 Walkthroughs
 Formal inspections
 Focused inspections
 Active inspections
 Checklists

 Testing
 Prototyping
 Formal validation

11

Testing

 There are two kinds of testing that affect
requirements engineering:

1. Testing the requirements themselves, aka
validation

2. Planning for the testing of the implementation
against the requirements

 Validation — Evaluate SRS wrt. customer requirements:

 Are we building the right system?

 Is the specification what the customer wants?

 Verification — Evaluate software artifact wrt. existing artifacts:

 Are we building the system right?

 For example, does the design implement the spec? 12

3/16/2016

3

Quantifiable & Non-
Quantifiable Requirements

 Quantifiable Requirements
 R: The system must respond quickly to customer enquiries

 Find a property that provides a scale for measurement within the context (e.g., mins)

 Under what circumstances would the system fail to meet this requirement?

 The stakeholders review the context: failure if a customer has to wait longer than 3 minutes
for a response

 “3 minutes" becomes the quality measure for this requirement

 Non-Quantifiable Requirements
 R: The automated interfaces of the system must be easy to learn

 There is no obvious measurement scale for "easy to learn“

 Investigate the meaning of the requirement within the particular context, identify limits for
measuring the requirement.

 What is considered a failure to meet this requirement?

 Novice users: stakeholders want novices to be productive within half an hour

 Quality measure: a novice must be able to complete a customer order transaction within 30
mins of first using the system

13S. Robertson. An Early Start to Testing:
How to Test Requirements, EuroSTAR '96

Testing Requirements

 Running an executable specification and
checking certain scenarios
 Simulating the product—good for getting customer

approval

 Type checking

 Completeness and consistency checks

 Best if not performed by author of specification

 The boundary between testing a specification
and demonstrating a prototype for customer
feedback is difficult to define

14

Advantages of Testing

 Low-level details checking is usually more
reliable when done by tools

 Requirements testing can be done earlier in the
development lifecycle than most other testing

15

Disadvantages of Testing

 Many notations for requirements specification
are not executable or even (usefully) checkable

 It is labour intensive and costly
 Hand holding of tools, designing of test cases
 Automated testing can help

 No clear stopping rule
 Law of diminishing returns definitely a factor in testing
 80/20 rule applies

Testing can only be used to show the
presence of errors, but not their absence.

—Edsger Dijkstra 16

Test Case Planning

 The requirements specification should describe
how to ascertain if the final product satisfies the
requirements
 Often called acceptance testing

 It should include a complete test plan
 An extensive collection of test cases

 For each test case, specify the expected response of
the system

 For large systems this is a separate document
called a Test Plan

17

Test Case Planning

 There are two basic kinds of test cases
1. Those generated from the specification (black box)

 Test what the system is supposed to do according to the specification
or interface, treating the implementation (at the system level) as a
black box.

2. Those generated from code / implementation (white box)
 Design == structure, so this is testing of the representation of the

system, rather than the idea of the system (the specification)
 Metaphorically, structural testing is about looking for likely weak spots

in the structure of the system, ignoring the black box semantics.
 Do all loops terminate? Are all if conditions tested? Is there any dead

code (unreachable by any execution)? …

 Obviously, at the requirements stage, the only kind that
can be considered is black-box test cases, generated
from the requirements.

18

3/16/2016

4

Granularity of Tests

 When we are testing code, we start with unit tests,
which are at the level of a class / module / file
(depending on the language)
 We try to rigorously test each method / procedure of each unit.

 You should have both black box and white box tests for
each unit.
 The black box tests are designed against the externally visible

interfaces of the unit
 For each method, think of ways of testing it using only your

knowledge of what it is supposed to do, not how it is implemented.

 The white box tests are designed against the way in which the
code is written
 For example, try to test all paths through a method, try to exercise all

test conditions in ifs and loops, boundary values, etc.

19

Integration Testing

 Gradually combine the units into logical
subsystems—integration testing
 Do more black box testing against the interface of the

whole subsystem

 More white box testing against our understanding of
how the subparts depend on and interact with each
other

 For a big system, there may be several phases of
integration testing as the subparts are merged to form
larger and larger subsystems

20

System Testing

 Black box test cases based around what the
system as a whole is designed to do
 Use the top level interface

 White box test cases designed around our
understanding of the structure of the design

 It is integration testing at the top level

21

Testing Granularity

 System-level test cases are based on what the
system can do, not what the customer expects.

 We design test cases around the requirements
with customer input— acceptance tests
 Any system that can pass the acceptance tests is

capable of satisfying the customer (and the
requirements model).

 Obviously, we can use the SRS and the customer to
design the acceptance tests; the other tests require
design information.

22

Scenarios as Test Cases

 Scenarios developed for the purpose of
identifying requirements are basically test
cases.

 For example, a scenario gives for each user
input the system’s response, and lays them
out in the order in which they should occur in
one computation in the system.

23

Requirements Testing Example

 Pick a requirement (e.g., functional requirement)

 For this requirement, think of ways of testing it

 using only your knowledge of what it is supposed to do

 not how it is implemented

24

Excellent Final Question

3/16/2016

5

Validation Techniques

 Reviews
 Walkthroughs
 Formal inspections
 Focused inspections
 Active inspections
 Checklists
 Testing

 Prototyping
 Formal validation

25

Prototyping

 The purpose of a prototype is to obtain a credible
validation response.

 Prototype—a quick and dirty implementation of
the most uncertain parts of the system, to
demonstrate to the users how the requirements
analysts understand requirements
 User interface prototyping is very useful and effective

for buy-in, fostering common understanding
 If the specification is executable, it is a prototype
 If not, then it is useful even to put together an

application that simulates the execution of
documented scenarios

26

Mock-up User Interfaces,
Screens, and Prototypes

 Very common and useful
 A picture is worth a thousand words

 Mock-up UIs, screens, and prototypes should not be used
before a good understanding of the requirements is reached
 Customers and users can react quite negatively to a mock-up UI

 Convey the wrong message

 Not esthetically pleasing

 Use task descriptions instead
 Much more difficult to disagree with a task than with a UI mock-up

 Customer that these are just suggested screens

 Establish links between customers and prototype
developers and user interface designers

27

Validation Techniques

 Reviews
 Walkthroughs
 Formal inspections
 Focused inspections
 Active inspections
 Checklists
 Testing

 Prototyping
 Formal validation

28

Formal Validation

 Ways to check if a formal specification has certain
desirable properties
 Completeness
 Consistency
 Mutual exclusion
 Particular temporal properties

 Techniques
 Model checking (for formal specification methods)
 Theorem proving (more general for any formal spec)
 Formal verification involves checking all possible

execution paths of the specification
29

