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SENG 321 Calendar

Announcements
 Fri, March 18

 S3a due

 Detailed technical design

 Include ethics 
requirements

 NOT A MANUAL (!)
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Final Exam 
 Sat, April 16
 19:00-22:00
 ECS 125

CRUD Technique

 Key data operations
 Create

 Read

 Update

 Delete

 Identify use cases that support CRUD operations

 Check data entities or domain classes
 Customer, OrderItem
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CRUD: Modeling Data and Process 
Interactions―E-Commerce
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CRUD Matrix—Hotel Room Booking
Create, Read, Update, Delete, Overview
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CRUD Matrix—Hotel Room Booking
Create, Read, Update, Delete, Overview
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CRUD Matrix—Hotel Room Booking
Create, Read, Update, Delete, Overview
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Book C  U  O C    O U  O

CheckinBooked RU U  O O U  O

CheckinNonbkd C  U  O C  O U  O

Checkout U U O R U

ChangeRoom R R O U  O

RecordService O C R        

PriceChange C  UDO C  UDO
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From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

CRUD Matrix
Create, Read, Update, Delete, Overview

 Develop a CRUD matrix for your project
 Five entities

 Five tasks

 Fill in matrix with letters
 Create: C

 Read: R

 Update: U

 Delete: D

 Overview: O
9

Excellent Final Question

Another CRUD Matrix Example
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Validation Techniques

 Reviews
 Walkthroughs
 Formal inspections
 Focused inspections
 Active inspections
 Checklists

 Testing
 Prototyping
 Formal validation
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Testing

 There are two kinds of testing that affect 
requirements engineering:

1. Testing the requirements themselves, aka 
validation

2. Planning for the testing of the implementation 
against the requirements

 Validation — Evaluate SRS wrt. customer requirements:

 Are we building the right system?

 Is the specification what the customer wants?

 Verification — Evaluate software artifact wrt. existing artifacts:

 Are we building the system right?

 For example, does the design implement the spec? 12
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Quantifiable & Non-
Quantifiable Requirements

 Quantifiable Requirements
 R: The system must respond quickly to customer enquiries

 Find a property that provides a scale for measurement within the context (e.g., mins)

 Under what circumstances would the system fail to meet this requirement?

 The stakeholders review the context: failure if a customer has to wait longer than 3 minutes 
for a response

 “3 minutes" becomes the quality measure for this requirement

 Non-Quantifiable Requirements
 R: The automated interfaces of the system must be easy to learn

 There is no obvious measurement scale for "easy to learn“

 Investigate the meaning of the requirement within the particular context, identify limits for 
measuring the requirement.

 What is considered a failure to meet this requirement?

 Novice users: stakeholders want novices to be productive within half an hour

 Quality measure: a novice must be able to complete a customer order transaction within 30 
mins of first using the system

13S. Robertson. An Early Start to Testing: 
How to Test Requirements, EuroSTAR '96

Testing Requirements

 Running an executable specification and 
checking certain scenarios
 Simulating the product—good for getting customer 

approval

 Type checking 

 Completeness and consistency checks

 Best if not performed by author of specification

 The boundary between testing a specification 
and demonstrating a prototype for customer 
feedback is difficult to define
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Advantages of Testing

 Low-level details checking is usually more 
reliable when done by tools

 Requirements testing can be done earlier in the 
development lifecycle than most other testing
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Disadvantages of Testing

 Many notations for requirements specification 
are not executable or even (usefully) checkable

 It is labour intensive and costly
 Hand holding of tools, designing of test cases
 Automated testing can help

 No clear stopping rule
 Law of diminishing returns definitely a factor in testing
 80/20 rule applies

Testing can only be used to show the
presence of errors, but not their absence.

—Edsger Dijkstra 16

Test Case Planning

 The requirements specification should describe 
how to ascertain if the final product satisfies the 
requirements
 Often called acceptance testing

 It should include a complete test plan
 An extensive collection of test cases

 For each test case, specify the expected response of 
the system

 For large systems this is a separate document 
called a Test Plan
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Test Case Planning

 There are two basic kinds of test cases
1. Those generated from the specification (black box)

 Test what the system is supposed to do according to the specification 
or interface, treating the implementation (at the system level) as a 
black box.

2. Those generated from code / implementation (white box)
 Design == structure, so this is testing of the representation of the 

system, rather than the idea of the system (the specification)
 Metaphorically, structural testing is about looking for likely weak spots 

in the structure of the system, ignoring the black box semantics.
 Do all loops terminate?  Are all if conditions tested?  Is there any dead 

code (unreachable by any execution)? …

 Obviously, at the requirements stage, the only kind that 
can be considered is black-box test cases, generated 
from the requirements.

18
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Granularity of Tests

 When we are testing code, we start with unit tests, 
which are at the level of a class / module / file 
(depending on the language)
 We try to rigorously test each method / procedure of each unit.

 You should have both black box and white box tests for 
each unit.
 The black box tests are designed against the externally visible 

interfaces of the unit
 For each method, think of ways of testing it using only your 

knowledge of what it is supposed to do, not how it is implemented.

 The white box tests are designed against the way in which the 
code is written
 For example, try to test all paths through a method, try to exercise all 

test conditions in ifs and loops, boundary values, etc.
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Integration Testing

 Gradually combine the units into logical 
subsystems—integration testing
 Do more black box testing against the interface of the 

whole subsystem 

 More white box testing against our understanding of 
how the subparts depend on and interact with each 
other

 For a big system, there may be several phases of 
integration testing as the subparts are merged to form 
larger and larger subsystems
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System Testing

 Black box test cases based around what the 
system as a whole is designed to do
 Use the top level interface

 White box test cases designed around our 
understanding of the structure of the design

 It is integration testing at the top level
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Testing Granularity

 System-level test cases are based on what the 
system can do, not what the customer expects.

 We design test cases around the requirements 
with customer input— acceptance tests
 Any system that can pass the acceptance tests is 

capable of satisfying the customer (and the 
requirements model).

 Obviously, we can use the SRS and the customer to 
design the acceptance tests; the other tests require 
design information.
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Scenarios as Test Cases

 Scenarios developed for the purpose of 
identifying requirements are basically test 
cases.

 For example, a scenario gives for each user 
input the system’s response, and lays them 
out in the order in which they should occur in 
one computation in the system.
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Requirements Testing Example

 Pick a requirement (e.g., functional requirement)

 For this requirement, think of ways of testing it 

 using only your knowledge of what it is supposed to do

 not how it is implemented

24

Excellent Final Question
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Validation Techniques

 Reviews
 Walkthroughs
 Formal inspections
 Focused inspections
 Active inspections
 Checklists
 Testing

 Prototyping
 Formal validation
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Prototyping

 The purpose of a prototype is to obtain a credible 
validation response.

 Prototype—a quick and dirty implementation of 
the most uncertain parts of the system, to 
demonstrate to the users how the requirements 
analysts understand requirements
 User interface prototyping is very useful and effective 

for buy-in, fostering common understanding
 If the specification is executable, it is a prototype
 If not, then it is useful even to put together an 

application that simulates the execution of
documented scenarios
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Mock-up User Interfaces, 
Screens, and Prototypes

 Very common and useful
 A picture is worth a thousand words

 Mock-up UIs, screens, and prototypes should not be used 
before a good understanding of the requirements is reached
 Customers and users can react quite negatively to a mock-up UI

 Convey the wrong message

 Not esthetically pleasing

 Use task descriptions instead
 Much more difficult to disagree with a task than with a UI mock-up

 Customer that these are just suggested screens

 Establish links between customers and prototype 
developers and user interface designers
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Validation Techniques

 Reviews
 Walkthroughs
 Formal inspections
 Focused inspections
 Active inspections
 Checklists
 Testing

 Prototyping
 Formal validation
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Formal Validation

 Ways to check if a formal specification has certain 
desirable properties
 Completeness
 Consistency
 Mutual exclusion
 Particular temporal properties

 Techniques
 Model checking (for formal specification methods)
 Theorem proving (more general for any formal spec)
 Formal verification involves checking all possible 

execution paths of the specification
29


