weigme to SENG 311

.aa@&iremeﬁ#s Engéneering

Let's make s an engaging colrse

Professor Hausi A. Muller phb PEng FCAE
Department of Computer Science
Faculty of Engineering

University of Victoria

www.engr.uvic.ca/~seng321/
coursesi.csc.uvic.ca/courses/201/spring/seng/321

Deliverable S3a

S3a
Technical
Design Spec

15% of
project

Deliverable S3b

Tue, Mar 22

S3b Manual

10% of
project

Quiz 3: Use cases

Wed, Mar 23

In class

2% of course

Deliverable C3

Thu, Mar 24

C3 feedback
on S3a&S3b

10% of
project

Easter break

Fri-Mon,
Mar 25-28

Fri, no class

Deliverable S4

Mar 29-Apr
1

S4 project
demo (in
TWF classes
and Tue lab;
no lab on
Thu)

10% of
project

Deliverable C4

Fri,
Apr 1

C4 feedback
on S4

5% of project

Last Day of Classes

Fri, Apr 1

Final Exam

Sat, Apr 16

19:00-22:00
ECS 125

000
0000
o000
L)
| X
Announcements :
e Fri, March 18 e Tue/Wed/Fri, March 29/30,
e S3adue April 1
» Detailed technical design * Inclass and Tue lab demos
spec e Nolabson Thu
e 3 presentations per hour
e Tue, March 22 e 15 mins per presentation
e S3bdue
e User manual due
e Fri, March 25 AR .
Good Frid | e Sat, April 16
e Good Friday, no class s 19:00-22-00
o ECS 125

Requirement Engineering

Process

Elicitation

‘_’\7

Analysis

Elicitation — collect AL
information about requirements

Analysis — understanding/modeling
desired behaviour

Specification — documenting behaviour

of proposed software system

Validation — checking whether documented

o

Specification

o

.

Validation

specification accomplishes customer’s requirements

Describing Non-Behavioral or

Non-Functional Requirements

Performance: 80% of searches will return results in less than two
seconds

e Accuracy: Will predict cost within 90% of actual cost

Portability: No technology should be used to prevent from moving
to Linux

II_Rbeusability: DB code should be reusable and exported into a
ibrary

Maintainability: Automated test must exist for all components.
Over n)ight tests must be run (all tests should take less than 24 hrs
to ruin

Interoperability: All config data stored in XML. Data stored in a
SQL DB. No DB triggers. Java

Capacity: System must handle 20 Million Users while maintaining
performance objectives!

Manageability: System should support system administrators in
troubleshooting problems

Functional Requirements

e Data Requirements
Specify the data to be stored in the system

e Functional Requirements: specify
Specify what data is to be used for,
Specify how data is recorded, computed, transformed,
updated, transmitted
e Many data are recorded, updated, and shown
through the user interface

Styles for Expressing
Functional Requirements

e Each style differs in:
Notation — diagrams, plain text, structured text
Ease of validation by customer or developer
Whether it specifies the environment or the product
Whether identifies the functions or gives details on
what they do

e We first focus on styles for identifying the

necessary functions

e Later, we present techniques for specifying what
the functions will do in more detalil

Context Diagrams

e Gives an overview of the required product
interfaces

e (Good for defining project scope
What is in (i.e., product)?
What is out (i.e., environment/domain)?
e Shows product as black box surrounded by

User groups
External systems with which it communicates

e Arrows indicate transfer of data
¢ Indicate the product domain and surroundings

Context Diagrams

R1:)
The product shall % ~ booking,

Account

system

have the following checkout, t -
interfaces: Recep- S°rVieenote, confirmation,
: : Invoice
tionist Telephone
system
%Guest

The reception domain
communicates with the
surroundings in this way:

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Recep-—~ "~ Reaception
tlpnlst

SX)‘_’

Accountant

Using Context Diagrams

e Very useful at the beginning and at the end
of a project
e Update as project progresses
Often out of date after design has progressed
significantly
e Defines scope

e Advantages

Validation
Easy to read by customers who can spot problems

Verification
Gives an overview of interfaces for developers
Offers a high-level checklist 10

Event / Function Lists

e An event is a request sent to the system from the
Environment to perform a function
e Often used to form use cases

e Environment events are often called business events
e Guest books room, guest checks in/out

e Each business event leads to an activity
e Expressed as a use case, task

e Note: you only specify the events not how they are
Implemented

e Guest checks in event, but does not specify all the updates in
the database

11

00
00
o0
o
Event List and Function List
Environment, domain or Product events
business events R2: The product shall handle the

following events / The product shall

R1: The product shall support provide the following functions:

the following business
events / user activities / tasks:

R1.1 Guest books

R1.2 Guest checks in
R1.3 Guest checks out
R1.4 Change room
R1.5 Service note arrives

User interface:

s R2.1 Find free room
R2.2 Record guest
R2.3 Find guest

R2.4 Record booking
— > | R2.5 Print confirmation
R2.6 Record checkin
R2.7 Checkout

T~ Many-to-many R2.8 Record service
relationships Accounting interface:
M:N R2.9 Periodic transfer of account
data
From: Soren Lauesen: Software Requirements 12

© Pearson / Addison-Wesley 2002

N~

Using Event / Function Lists

e Organize lists
e According to product interfaces
e Clock/time events
o For example, to indicate nightly backup or syncing
e Event = Function mapping
e Functions can be used in multiple tasks
e Specify functions instead of product events

e Focus on business events instead of product events which are
often too low level

e Gives designer more freedom

e Level of events is critical
e Ul events are usually too low level
e Interface events are more appropriate

13

Using Event / Function Lists (cont.)

e Advantage

Validation: checklist for customers. Though some
events are difficult to check

Verification: checklist for developers
e Disadvantage

Hard to validate them all

Give false sense of security that you gathered all
possible events

14

Feature Requirements

e Most common and straightforward way to write
requirements—but not the best way
A design or implementation is more than a collection of features
(i.e., fulfill or realize business goals)
e Advantage
Validation: Uses the customer’s language
Customers and users can readily articulate features
Verification: Easy to check in the final product
Is this feature implemented?

e Disadvantage

Feature vs. task: Customer dreams up too many features
with no business tasks to support them

Hard to validate that a particular feature permits the
customer to fulfill a particular business goal

15

Feature Requirements

R1: The product shall be able to record that a room is occupied for
repair in a specified period.

R2: The product shall be able to show and print a suggestion for
staffing during the next two weeks based on historical room
occupation. The supplier shall specify the calculation details.

R3: The product shall be able to run in a mode where rooms are not
booked by room number, but only by room type. Actual room
allocation is not done until check in.

R4: The product shall be able to print out a sheet with room
allocation for each room booked under one stay. /

In order to handle group tours with several
guests, it is convenient to prepare for

From: Soren Lauesen: Software Requirements arrival by prln_tlr_]g out a sheet per gue% for
© Pearson / Addison-Wesley 2002 Qhe gueSt to fill in.)

What are the Business Goals behind
these Feature Requirements?

R1: The product shall be able to record that a room is
occupied for repair in a specified period.

R2: The product shall be able to show and print a suggestion for
staffing during the next two weeks based on historical room
occupation. The supplier shall specify the calculation details.

R3: The product shall be able to run in a mode where rooms are not
booked by room number, but only by room type. Actual room
allocation is not done until check in.

- /

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

17

What are the Business Goals behind
these Feature Requirements?

R1: The product shall be able to record that a room is
occupied for repair in a specified period.
= Optimize when to repair, refurbish, and renovate.

R2: The product shall be able to show and print a suggestion for
staffing during the next two weeks based on historical room
occupation. The supplier shall specify the calculation details.
=» Optimize staff hiring over time based on history.

R3: The product shall be able to run in a mode where rooms are not
booked by room number, but only by room type. Actual room
allocation is not done until check in.
=> Allow flexibility and optimize for group reservations.

~——— /

From: Soren Lauesen: Software Requirements 18
© Pearson / Addison-Wesley 2002

Mock-up User Interfaces,
Screens, and Prototypes

e Very common and useful
A picture is worth a thousand words
e Mock-up Uls, screens, and prototypes should not be used
before a good understanding of the requirements is reached

Customers and users can react quite negatively to a mock-up Ul
Convey the wrong message
Not esthetically pleasing

e Use task descriptions instead
Much more difficult to disagree with a task than with a Ul mock-up

e Establish links between customers and prototype
developers and user interface designers

19

What are Use Cases?

e Use cases (and scenarios) address the problem of:
e How can | make functional requirements easier to elicit/read/review?

e Other descriptions:
e They are stories of using a system
e Requirements in context

e High-level descriptions of the system’s functionality and its
environment

“Cases of use”

Describe how the system meets user goals

A way of doing “user-centered analysis”

A first cut at the functionality of an application [Rumbaugh]

20

ATM Use Case

A Use Case describes sequences of actions a system performs that
yield an observable result of value to a particular actor:

= Customer Inserts Card
= Customer Withdraws Cash

iy validateCustomer
)’
)

O

bankManager

collectUsageStats

21
preferredCustomer

Use Cases
Selected Definitions :

e A use case is a story of using the system to fulfill a goal.

e |t models an abstract task (with steps) performed by a user

Rent videos, order blood E—
(" Query blood E

e An actor is a person or a program external to the system

e An actor is an environmental entity that initiates or is otherwise
involved with the system.

e May be a human (Client) or a program (BillingSystem)
e A better term for the notion of an actor might be role

i

N
End User

22

Actors

e An actor is someone or something that interacts with the system

A primary actor is one that initiates a use case

Uses cases are (usually) initiated by a primary actor
(Exceptions are those that «extend» / «include» other UCs)

e Supporting actor may be invoked by the system

e Off-stage actor, who has an “interest” in the use case
Often this concerns NFRs (e.g., government regulatory agency)

e Notation
UML stickman to represent a human actor
Non-stick figure diagram to represent a non-human actor

e.g., a box with «actor» keyword
? «actor»
o BillingSystem
End User

23

Use Case Legend

Actor: an entity in the environment that initiates
and interacts with the system (i.e., person or program)

N

Q Use case: usage of system a set of sequences of actions

Association: relation between actor and use cases

— Includes dependency: a sub use case

—D Extends dependency: a sequence of use cases

24

Usage Modeling

The use case technique is used to capture a system's
behavioural requirements by detailing scenario-driven
threads through the functional requirements.

In 1986, lvar Jacobson, an important contributor
to UML and RUP, first formulated the visual
modeling technique for specifying use cases.

During the 1990s use cases became one of the most
common practices for capturing functional requirements.

This is especially the case within the object-oriented
community where they originated, but their applicability is
not restricted to object-oriented systems, because use
cases are not object-oriented in nature.

25

Usage Modeling

e Develop effective use cases for validation

e Usage modeling explores and investigates
how people work with a system
Critical for the user manual (i.e., deliverable S3)
Different classes of users

Roadmap for user manual

What to read first, safety instructions, system overview, tutorials, built-in
demos, help system, on-line and off-line documentation, bootstrapping

e The goal is to develop a good understanding of:
What the system should do for the user?
How people will actually use the system?
What kind of queries (e.g., group check in)?

26

Business and System Use Cases

[
Uses technology-independent terminology
Describes a business process that is used by its business actors
to achieve their goals
Describe a process that provides value to the business actor
Describes what the process does

[

Uses technology-dependent terminology (i.e., system
functionality level)

Specifies the function or the service system provides for the user.
Describes what the actor achieves interacting with the system.

27

Usage Modeling Techniques

e Business use cases
Model a view of a system’s behavior

e System use cases
Describe in details how users will interact with system—refer to Ul

e UML use case diagram
Give an overview of the use cases and actors
Exhibit use case dependencies

e User stories
Fine-grained requirements that are used to estimate development
effort and prioritization

e Features

Very fine grained requirements that can be implemented in a few

hours
28

Examples for
Usage Modeling Techniques

e Use case
Student can enroll in course
Provides ID to system (i.e., log in)
Searches for course
Picks course
System check prerequisites
System enrolls student
Use case discusses exceptions and alternatives—course full

e User stories

Student can

Enroll in course

Search for courses

Drop course

Optimize (e.g., select evening courses only, enroll in all required courses)

e Features (feature sets)

Rarely provide significant value to stakeholders by themselves
Track number of students in a course (courses)

Student can search for courses (students) 29

Use Case Template

e Use case name e Basic course events
e \Version e Alternative paths
o Goal e Postconditions
e Summary e Business rules
e Actors e Notes
e Preconditions e Author and date
e [riggers
http://en.wikipedia.org/wiki/Use case 30

http://en.wikipedia.org/wiki/Use case diagram

Object-Oriented Analysis

e The key steps of OOA are:

1. Define the use cases — including stories of use
Formatted text descriptions, maybe UML UC diagrams

2. Define the domain model — find the objects, classes
UML class diagram

3. Define the interactions between domain components
UML sequence/communication/collaboration diagrams

e Define class diagrams—is part of object-oriented
design (OOD); not covered here

31

Writing Effective Use Cases

e Based on work of lvar Jacobson

e One of the UML/Rational “three amigos”
Grady Booch, Jim Rumbaugh and Ivar Jacobson

e Based on experience at Ericsson building telephony
systems

e His book is old and considered hard to read.
e Use cases aren’t inherently OO, —

“The Crysiaé Colecton tor 5
At Cockbum. Colecton Edsor

but are often used in OOA&D Writing Effective
e Recommended reference tse Eaf;es

o Writing Effective Use Cases
by Alistair Cockburn, Addison-Wesley, 2001

UML Use Case Diagram fora ::::
Simple Restaurant Model :
Cares)

RecordOutcome

http://en.wikipedia.org/wiki/Use case 33
l http://en.wikipedia.org/wiki/Use case diagram

Blood Bank Use Case

*A blood bank Client logs in.
=The Client requests quantities
of various types of blood.

*The blood bank generates a
hotice to Shipping and records
that the blood has been
removed from the system.

=An invoice for the order is
sent to Billing.

e Basic idea

>
/H_

Blood bank client -

w8

Operatur

Waterloo Blood Bank AT

—‘< Order bluud >
\ "y ==include=

i WO | BRI

r//
Query bluud//

e

" < ==include==

“{ Add bluud)

Map out desired core system functionality at a coarsely-grained
level; consider variations. Explore. Discuss.

34

