
Professor Hausi A. Müller PhD PEng FCAE

Department of Computer Science
Faculty of Engineering

University of Victoria

www.engr.uvic.ca/~seng321/
courses1.csc.uvic.ca/courses/201/spring/seng/321

2

SENG 321
Calendar

Announcements
 Fri, March 18

 S3a due
 Detailed technical design

spec

 Tue, March 22
 S3b due
 User manual due

 Fri, March 25
 Good Friday, no class

 Tue/Wed/Fri, March 29/30,
April 1
 In class and Tue lab demos
 No labs on Thu
 3 presentations per hour
 15 mins per presentation

3

Final Exam
 Sat, April 16
 19:00-22:00
 ECS 125

Requirement Engineering
Process

Elicitation

Analysis

Specification

Validation

 Elicitation − collect
information about requirements

 Analysis − understanding/modeling
desired behaviour

 Specification − documenting behaviour
of proposed software system

 Validation − checking whether documented
specification accomplishes customer’s requirements

4

Describing Non-Behavioral or
Non-Functional Requirements
 Performance: 80% of searches will return results in less than two

seconds
 Accuracy: Will predict cost within 90% of actual cost
 Portability: No technology should be used to prevent from moving

to Linux
 Reusability: DB code should be reusable and exported into a

library
 Maintainability: Automated test must exist for all components.

Over night tests must be run (all tests should take less than 24 hrs
to ruin)

 Interoperability: All config data stored in XML. Data stored in a
SQL DB. No DB triggers. Java

 Capacity: System must handle 20 Million Users while maintaining
performance objectives!

 Manageability: System should support system administrators in
troubleshooting problems

5

Functional Requirements

 Data Requirements
 Specify the data to be stored in the system

 Functional Requirements: specify
 Specify what data is to be used for,
 Specify how data is recorded, computed, transformed,

updated, transmitted
 Many data are recorded, updated, and shown

through the user interface

6

Styles for Expressing
Functional Requirements
 Each style differs in:
 Notation — diagrams, plain text, structured text
 Ease of validation by customer or developer
 Whether it specifies the environment or the product
 Whether identifies the functions or gives details on

what they do
 We first focus on styles for identifying the

necessary functions
 Later, we present techniques for specifying what

the functions will do in more detail

7

Context Diagrams
 Gives an overview of the required product

interfaces
 Good for defining project scope
 What is in (i.e., product)?
 What is out (i.e., environment/domain)?

 Shows product as black box surrounded by
 User groups
 External systems with which it communicates

 Arrows indicate transfer of data
 Indicate the product domain and surroundings

8

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Hotel
system

Guest

Account
system

confirmation,
invoice

booking,
checkout,
service note,
. . .

R1:
The product shall
have the following
interfaces: Recep-

tionist Telephone
system

Hotel
system

Guest

Account
system

Accountant
Waiter

R2:
The reception domain
communicates with the
surroundings in this way:

ReceptionRecep-
tionist

Context Diagrams

9

Using Context Diagrams
 Very useful at the beginning and at the end

of a project
 Update as project progresses
 Often out of date after design has progressed

significantly
 Defines scope
 Advantages
 Validation

 Easy to read by customers who can spot problems
 Verification

 Gives an overview of interfaces for developers
 Offers a high-level checklist 10

Event / Function Lists
 An event is a request sent to the system from the

Environment to perform a function
 Often used to form use cases

 Environment events are often called business events
 Guest books room, guest checks in/out

 Each business event leads to an activity
 Expressed as a use case, task

 Note: you only specify the events not how they are
implemented
 Guest checks in event, but does not specify all the updates in

the database

11

R1: The product shall support
the following business
events / user activities / tasks:

R1.1 Guest books
R1.2 Guest checks in
R1.3 Guest checks out
R1.4 Change room
R1.5 Service note arrives

. . .

Product eventsEnvironment, domain or
business events

Many-to-many
relationships

M:N

R2: The product shall handle the
following events / The product shall
provide the following functions:
User interface:
R2.1 Find free room
R2.2 Record guest
R2.3 Find guest
R2.4 Record booking
R2.5 Print confirmation
R2.6 Record checkin
R2.7 Checkout
R2.8 Record service
Accounting interface:
R2.9 Periodic transfer of account

data
. . .From: Soren Lauesen: Software Requirements

© Pearson / Addison-Wesley 2002

Event List and Function List

12

Using Event / Function Lists
 Organize lists

 According to product interfaces
 Clock/time events

 For example, to indicate nightly backup or syncing
 Event Function mapping

 Functions can be used in multiple tasks
 Specify functions instead of product events

 Focus on business events instead of product events which are
often too low level

 Gives designer more freedom
 Level of events is critical

 UI events are usually too low level
 Interface events are more appropriate

13

Using Event / Function Lists (cont.)

 Advantage
 Validation: checklist for customers. Though some

events are difficult to check
 Verification: checklist for developers

 Disadvantage
 Hard to validate them all
 Give false sense of security that you gathered all

possible events

14

Feature Requirements
 Most common and straightforward way to write

requirements—but not the best way
 A design or implementation is more than a collection of features

(i.e., fulfill or realize business goals)
 Advantage

 Validation: Uses the customer’s language
 Customers and users can readily articulate features

 Verification: Easy to check in the final product
 Is this feature implemented?

 Disadvantage
 Feature vs. task: Customer dreams up too many features

with no business tasks to support them
 Hard to validate that a particular feature permits the

customer to fulfill a particular business goal
15

R1: The product shall be able to record that a room is occupied for
repair in a specified period.

R2: The product shall be able to show and print a suggestion for
staffing during the next two weeks based on historical room
occupation. The supplier shall specify the calculation details.

R3: The product shall be able to run in a mode where rooms are not
booked by room number, but only by room type. Actual room
allocation is not done until check in.

R4: The product shall be able to print out a sheet with room
allocation for each room booked under one stay.

In order to handle group tours with several
guests, it is convenient to prepare for
arrival by printing out a sheet per guest for
the guest to fill in.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Feature Requirements

16

R1: The product shall be able to record that a room is
occupied for repair in a specified period.

R2: The product shall be able to show and print a suggestion for
staffing during the next two weeks based on historical room
occupation. The supplier shall specify the calculation details.

R3: The product shall be able to run in a mode where rooms are not
booked by room number, but only by room type. Actual room
allocation is not done until check in.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

What are the Business Goals behind
these Feature Requirements?

17

R1: The product shall be able to record that a room is
occupied for repair in a specified period.
 Optimize when to repair, refurbish, and renovate.

R2: The product shall be able to show and print a suggestion for
staffing during the next two weeks based on historical room
occupation. The supplier shall specify the calculation details.
 Optimize staff hiring over time based on history.

R3: The product shall be able to run in a mode where rooms are not
booked by room number, but only by room type. Actual room
allocation is not done until check in.
 Allow flexibility and optimize for group reservations.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

What are the Business Goals behind
these Feature Requirements?

18

Mock-up User Interfaces,
Screens, and Prototypes
 Very common and useful

 A picture is worth a thousand words
 Mock-up UIs, screens, and prototypes should not be used

before a good understanding of the requirements is reached
 Customers and users can react quite negatively to a mock-up UI

 Convey the wrong message
 Not esthetically pleasing

 Use task descriptions instead
 Much more difficult to disagree with a task than with a UI mock-up

 Establish links between customers and prototype
developers and user interface designers

19

What are Use Cases?
 Use cases (and scenarios) address the problem of:

 How can I make functional requirements easier to elicit/read/review?
 Other descriptions:

 They are stories of using a system
 Requirements in context
 High-level descriptions of the system’s functionality and its

environment
 “Cases of use”
 Describe how the system meets user goals
 A way of doing “user-centered analysis”
 A first cut at the functionality of an application [Rumbaugh]

20

ATM Use Case
A Use Case describes sequences of actions a system performs that
yield an observable result of value to a particular actor:
 Customer Inserts Card
 Customer Withdraws Cash

21

Use Cases
Selected Definitions
 A use case is a story of using the system to fulfill a goal.

 It models an abstract task (with steps) performed by a user
 Rent videos, order blood

 An actor is a person or a program external to the system
 An actor is an environmental entity that initiates or is otherwise

involved with the system.
 May be a human (Client) or a program (BillingSystem)
 A better term for the notion of an actor might be role

22

 An actor is someone or something that interacts with the system
 A primary actor is one that initiates a use case

 Uses cases are (usually) initiated by a primary actor
 (Exceptions are those that «extend» / «include» other UCs)

 Supporting actor may be invoked by the system

 Off-stage actor, who has an “interest” in the use case
 Often this concerns NFRs (e.g., government regulatory agency)

 Notation
 UML stickman to represent a human actor
 Non-stick figure diagram to represent a non-human actor

e.g., a box with «actor» keyword

«actor»
BillingSystem

Actors

23

Use Case Legend

Actor: an entity in the environment that initiates
and interacts with the system (i.e., person or program)

Use case: usage of system a set of sequences of actions

Association: relation between actor and use cases

Includes dependency: a sub use case

Extends dependency: a sequence of use cases

24

Usage Modeling
 The use case technique is used to capture a system's

behavioural requirements by detailing scenario-driven
threads through the functional requirements.

 In 1986, Ivar Jacobson, an important contributor
to UML and RUP, first formulated the visual
modeling technique for specifying use cases.

 During the 1990s use cases became one of the most
common practices for capturing functional requirements.

 This is especially the case within the object-oriented
community where they originated, but their applicability is
not restricted to object-oriented systems, because use
cases are not object-oriented in nature.

25

Usage Modeling
 Develop effective use cases for validation
 Usage modeling explores and investigates

how people work with a system
 Critical for the user manual (i.e., deliverable S3)
 Different classes of users
 Roadmap for user manual

 What to read first, safety instructions, system overview, tutorials, built-in
demos, help system, on-line and off-line documentation, bootstrapping

 The goal is to develop a good understanding of:
 What the system should do for the user?
 How people will actually use the system?

 What kind of queries (e.g., group check in)?

26

Business and System Use Cases
 Business use case

 Uses technology-independent terminology
 Describes a business process that is used by its business actors

to achieve their goals
 Describe a process that provides value to the business actor
 Describes what the process does

 System use case
 Uses technology-dependent terminology (i.e., system

functionality level)
 Specifies the function or the service system provides for the user.
 Describes what the actor achieves interacting with the system.

27

Usage Modeling Techniques
 Business use cases

 Model a technology-independent view of a system’s behavior
 System use cases

 Describe in details how users will interact with system—refer to UI
 UML use case diagram

 Give an overview of the use cases and actors
 Exhibit use case dependencies

 User stories
 Fine-grained requirements that are used to estimate development

effort and prioritization
 Features

 Very fine grained requirements that can be implemented in a few
hours

28

Examples for
Usage Modeling Techniques
 Use case

 Student can enroll in course
 Provides ID to system (i.e., log in)
 Searches for course
 Picks course
 System check prerequisites
 System enrolls student
 Use case discusses exceptions and alternatives—course full

 User stories
 Student can

 Enroll in course
 Search for courses
 Drop course
 Optimize (e.g., select evening courses only, enroll in all required courses)

 Features (feature sets)
 Rarely provide significant value to stakeholders by themselves
 Track number of students in a course (courses)
 Student can search for courses (students) 29

Use Case Template
 Use case name
 Version
 Goal
 Summary
 Actors
 Preconditions
 Triggers

 Basic course events
 Alternative paths
 Postconditions
 Business rules
 Notes
 Author and date

30http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Use_case_diagram

Object-Oriented Analysis

 The key steps of OOA are:
1. Define the use cases — including stories of use

 Formatted text descriptions, maybe UML UC diagrams
2. Define the domain model — find the objects, classes

 UML class diagram
3. Define the interactions between domain components

 UML sequence/communication/collaboration diagrams

 Define class diagrams—is part of object-oriented
design (OOD); not covered here

31

Writing Effective Use Cases
 Based on work of Ivar Jacobson

 One of the UML/Rational “three amigos”
 Grady Booch, Jim Rumbaugh and Ivar Jacobson

 Based on experience at Ericsson building telephony
systems

 His book is old and considered hard to read.
 Use cases aren’t inherently OO,

but are often used in OOA&D
 Recommended reference
 Writing Effective Use Cases

by Alistair Cockburn, Addison-Wesley, 2001
http://www.usecases.org

32

UML Use Case Diagram for a
Simple Restaurant Model

33http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Use_case_diagram

Blood Bank Use Case

 Basic idea
 Map out desired core system functionality at a coarsely-grained

level; consider variations. Explore. Discuss.

A blood bank Client logs in.
The Client requests quantities
of various types of blood.
The blood bank generates a
notice to Shipping and records
that the blood has been
removed from the system.
An invoice for the order is
sent to Billing.

34

