
3/19/2016

1

Professor Hausi A. Müller PhD PEng FCAE

Department of Computer Science
Faculty of Engineering

University of Victoria

www.engr.uvic.ca/~seng321/
courses1.csc.uvic.ca/courses/201/spring/seng/321

2

SENG 321
Calendar

Announcements

 Fri, March 18

 S3a due

 Detailed technical design
spec

 Tue, March 22

 S3b due

 User manual due

 Fri, March 25

 Good Friday, no class

 Tue/Wed/Fri, March 29/30,
April 1

 In class and Tue lab demos

 No labs on Thu

 3 presentations per hour

 15 mins per presentation

3

Final Exam
 Sat, April 16
 19:00-22:00
 ECS 125

Requirement Engineering
Process

Elicitation

Analysis

Specification

Validation

 Elicitation − collect
information about requirements

 Analysis − understanding/modeling
desired behaviour

 Specification − documenting behaviour
of proposed software system

 Validation − checking whether documented
specification accomplishes customer’s requirements

4

Describing Non-Behavioral or
Non-Functional Requirements
 Performance: 80% of searches will return results in less than two

seconds
 Accuracy: Will predict cost within 90% of actual cost
 Portability: No technology should be used to prevent from moving

to Linux
 Reusability: DB code should be reusable and exported into a

library
 Maintainability: Automated test must exist for all components.

Over night tests must be run (all tests should take less than 24 hrs
to ruin)

 Interoperability: All config data stored in XML. Data stored in a
SQL DB. No DB triggers. Java

 Capacity: System must handle 20 Million Users while maintaining
performance objectives!

 Manageability: System should support system administrators in
troubleshooting problems

5

Functional Requirements

 Data Requirements
 Specify the data to be stored in the system

 Functional Requirements: specify
 Specify what data is to be used for,

 Specify how data is recorded, computed, transformed,
updated, transmitted

 Many data are recorded, updated, and shown
through the user interface

6

3/19/2016

2

Styles for Expressing
Functional Requirements

 Each style differs in:
 Notation — diagrams, plain text, structured text
 Ease of validation by customer or developer
 Whether it specifies the environment or the product
 Whether identifies the functions or gives details on

what they do
 We first focus on styles for identifying the

necessary functions
 Later, we present techniques for specifying what

the functions will do in more detail

7

Context Diagrams

 Gives an overview of the required product
interfaces

 Good for defining project scope
 What is in (i.e., product)?
 What is out (i.e., environment/domain)?

 Shows product as black box surrounded by
 User groups
 External systems with which it communicates

 Arrows indicate transfer of data
 Indicate the product domain and surroundings

8

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Hotel
system

Guest

Account
system

confirmation,
invoice

booking,
checkout,
service note,
. . .

R1:
The product shall
have the following
interfaces: Recep-

tionist Telephone
system

Hotel
system

Guest

Account
system

Accountant
Waiter

R2:
The reception domain
communicates with the
surroundings in this way:

ReceptionRecep-
tionist

Context Diagrams

9

Using Context Diagrams

 Very useful at the beginning and at the end
of a project

 Update as project progresses
 Often out of date after design has progressed

significantly

 Defines scope
 Advantages
 Validation

 Easy to read by customers who can spot problems

 Verification
 Gives an overview of interfaces for developers
 Offers a high-level checklist 10

Event / Function Lists

 An event is a request sent to the system from the
Environment to perform a function
 Often used to form use cases

 Environment events are often called business events
 Guest books room, guest checks in/out

 Each business event leads to an activity
 Expressed as a use case, task

 Note: you only specify the events not how they are
implemented
 Guest checks in event, but does not specify all the updates in

the database

11

R1: The product shall support
the following business
events / user activities / tasks:

R1.1 Guest books
R1.2 Guest checks in
R1.3 Guest checks out
R1.4 Change room
R1.5 Service note arrives

. . .

Product eventsEnvironment, domain or
business events

Many-to-many
relationships

M:N

R2: The product shall handle the
following events / The product shall
provide the following functions:

User interface:
R2.1 Find free room
R2.2 Record guest
R2.3 Find guest
R2.4 Record booking
R2.5 Print confirmation
R2.6 Record checkin
R2.7 Checkout
R2.8 Record service

Accounting interface:
R2.9 Periodic transfer of account

data
. . .From: Soren Lauesen: Software Requirements

© Pearson / Addison-Wesley 2002

Event List and Function List

12

3/19/2016

3

Using Event / Function Lists

 Organize lists
 According to product interfaces

 Clock/time events
 For example, to indicate nightly backup or syncing

 Event  Function mapping
 Functions can be used in multiple tasks

 Specify functions instead of product events
 Focus on business events instead of product events which are

often too low level
 Gives designer more freedom

 Level of events is critical
 UI events are usually too low level
 Interface events are more appropriate

13

Using Event / Function Lists (cont.)

 Advantage
 Validation: checklist for customers. Though some

events are difficult to check

 Verification: checklist for developers

 Disadvantage
 Hard to validate them all

 Give false sense of security that you gathered all
possible events

14

Feature Requirements
 Most common and straightforward way to write

requirements—but not the best way
 A design or implementation is more than a collection of features

(i.e., fulfill or realize business goals)

 Advantage
 Validation: Uses the customer’s language

 Customers and users can readily articulate features

 Verification: Easy to check in the final product

 Is this feature implemented?

 Disadvantage
 Feature vs. task: Customer dreams up too many features

with no business tasks to support them

 Hard to validate that a particular feature permits the
customer to fulfill a particular business goal

15

R1: The product shall be able to record that a room is occupied for
repair in a specified period.

R2: The product shall be able to show and print a suggestion for
staffing during the next two weeks based on historical room
occupation. The supplier shall specify the calculation details.

R3: The product shall be able to run in a mode where rooms are not
booked by room number, but only by room type. Actual room
allocation is not done until check in.

R4: The product shall be able to print out a sheet with room
allocation for each room booked under one stay.

In order to handle group tours with several
guests, it is convenient to prepare for
arrival by printing out a sheet per guest for
the guest to fill in.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

Feature Requirements

16

R1: The product shall be able to record that a room is
occupied for repair in a specified period.

R2: The product shall be able to show and print a suggestion for
staffing during the next two weeks based on historical room
occupation. The supplier shall specify the calculation details.

R3: The product shall be able to run in a mode where rooms are not
booked by room number, but only by room type. Actual room
allocation is not done until check in.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

What are the Business Goals behind
these Feature Requirements?

17

R1: The product shall be able to record that a room is
occupied for repair in a specified period.
 Optimize when to repair, refurbish, and renovate.

R2: The product shall be able to show and print a suggestion for
staffing during the next two weeks based on historical room
occupation. The supplier shall specify the calculation details.
 Optimize staff hiring over time based on history.

R3: The product shall be able to run in a mode where rooms are not
booked by room number, but only by room type. Actual room
allocation is not done until check in.
 Allow flexibility and optimize for group reservations.

From: Soren Lauesen: Software Requirements
© Pearson / Addison-Wesley 2002

What are the Business Goals behind
these Feature Requirements?

18

3/19/2016

4

Mock-up User Interfaces,
Screens, and Prototypes

 Very common and useful
 A picture is worth a thousand words

 Mock-up UIs, screens, and prototypes should not be used
before a good understanding of the requirements is reached
 Customers and users can react quite negatively to a mock-up UI

 Convey the wrong message

 Not esthetically pleasing

 Use task descriptions instead
 Much more difficult to disagree with a task than with a UI mock-up

 Establish links between customers and prototype
developers and user interface designers

19

What are Use Cases?

 Use cases (and scenarios) address the problem of:
 How can I make functional requirements easier to elicit/read/review?

 Other descriptions:
 They are stories of using a system
 Requirements in context
 High-level descriptions of the system’s functionality and its

environment
 “Cases of use”
 Describe how the system meets user goals
 A way of doing “user-centered analysis”
 A first cut at the functionality of an application [Rumbaugh]

20

ATM Use Case

A Use Case describes sequences of actions a system performs that
yield an observable result of value to a particular actor:
 Customer Inserts Card
 Customer Withdraws Cash

21

Use Cases
Selected Definitions

 A use case is a story of using the system to fulfill a goal.
 It models an abstract task (with steps) performed by a user

 Rent videos, order blood

 An actor is a person or a program external to the system
 An actor is an environmental entity that initiates or is otherwise

involved with the system.
 May be a human (Client) or a program (BillingSystem)
 A better term for the notion of an actor might be role

22

 An actor is someone or something that interacts with the system
 A primary actor is one that initiates a use case

 Uses cases are (usually) initiated by a primary actor
 (Exceptions are those that «extend» / «include» other UCs)

 Supporting actor may be invoked by the system

 Off-stage actor, who has an “interest” in the use case
 Often this concerns NFRs (e.g., government regulatory agency)

 Notation
 UML stickman to represent a human actor
 Non-stick figure diagram to represent a non-human actor

e.g., a box with «actor» keyword

«actor»
BillingSystem

Actors

23

Use Case Legend

Actor: an entity in the environment that initiates
and interacts with the system (i.e., person or program)

Use case: usage of system a set of sequences of actions

Association: relation between actor and use cases

Includes dependency: a sub use case

Extends dependency: a sequence of use cases

24

3/19/2016

5

Usage Modeling

 The use case technique is used to capture a system's
behavioural requirements by detailing scenario-driven
threads through the functional requirements.

 In 1986, Ivar Jacobson, an important contributor
to UML and RUP, first formulated the visual
modeling technique for specifying use cases.

 During the 1990s use cases became one of the most
common practices for capturing functional requirements.

 This is especially the case within the object-oriented
community where they originated, but their applicability is
not restricted to object-oriented systems, because use
cases are not object-oriented in nature.

25

Usage Modeling

 Develop effective use cases for validation
 Usage modeling explores and investigates

how people work with a system
 Critical for the user manual (i.e., deliverable S3)
 Different classes of users
 Roadmap for user manual

 What to read first, safety instructions, system overview, tutorials, built-in
demos, help system, on-line and off-line documentation, bootstrapping

 The goal is to develop a good understanding of:
 What the system should do for the user?
 How people will actually use the system?

 What kind of queries (e.g., group check in)?

26

Business and System Use Cases

 Business use case
 Uses technology-independent terminology

 Describes a business process that is used by its business actors
to achieve their goals

 Describe a process that provides value to the business actor

 Describes what the process does

 System use case
 Uses technology-dependent terminology (i.e., system

functionality level)

 Specifies the function or the service system provides for the user.

 Describes what the actor achieves interacting with the system.

27

Usage Modeling Techniques

 Business use cases
 Model a technology-independent view of a system’s behavior

 System use cases
 Describe in details how users will interact with system—refer to UI

 UML use case diagram
 Give an overview of the use cases and actors
 Exhibit use case dependencies

 User stories
 Fine-grained requirements that are used to estimate development

effort and prioritization

 Features
 Very fine grained requirements that can be implemented in a few

hours
28

Examples for
Usage Modeling Techniques

 Use case
 Student can enroll in course

 Provides ID to system (i.e., log in)
 Searches for course
 Picks course
 System check prerequisites
 System enrolls student
 Use case discusses exceptions and alternatives—course full

 User stories
 Student can

 Enroll in course
 Search for courses
 Drop course
 Optimize (e.g., select evening courses only, enroll in all required courses)

 Features (feature sets)
 Rarely provide significant value to stakeholders by themselves
 Track number of students in a course (courses)
 Student can search for courses (students)

29

Use Case Template

 Use case name

 Version

 Goal

 Summary

 Actors

 Preconditions

 Triggers

 Basic course events

 Alternative paths

 Postconditions

 Business rules

 Notes

 Author and date

30http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Use_case_diagram

3/19/2016

6

Object-Oriented Analysis

 The key steps of OOA are:
1. Define the use cases — including stories of use

 Formatted text descriptions, maybe UML UC diagrams
2. Define the domain model — find the objects, classes

 UML class diagram
3. Define the interactions between domain components

 UML sequence/communication/collaboration diagrams

 Define class diagrams—is part of object-oriented
design (OOD); not covered here

31

Writing Effective Use Cases

 Based on work of Ivar Jacobson
 One of the UML/Rational “three amigos”
 Grady Booch, Jim Rumbaugh and Ivar Jacobson

 Based on experience at Ericsson building telephony
systems

 His book is old and considered hard to read.
 Use cases aren’t inherently OO,

but are often used in OOA&D
 Recommended reference
 Writing Effective Use Cases

by Alistair Cockburn, Addison-Wesley, 2001
http://www.usecases.org

32

UML Use Case Diagram for a
Simple Restaurant Model

33http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Use_case_diagram

Blood Bank Use Case

 Basic idea
 Map out desired core system functionality at a coarsely-grained

level; consider variations. Explore. Discuss.

A blood bank Client logs in.
The Client requests quantities
of various types of blood.
The blood bank generates a
notice to Shipping and records
that the blood has been
removed from the system.
An invoice for the order is
sent to Billing.

34

