

Deliverable 53a	Fri, Mar 18	S3a Technical Design Spec	15% of project
Deliverable 53b	Tue, Mar 22	S3b Manual	10% of project
Quiz 3: Use cases	Wed, Mar 23	In class	2% of course
Deliverable C3	Thu, Mar 24	C3 feedback on S3a&S3b	10% of project
Easter break	Fri-Mon, Mar 25-28	Fri, no class	
Deliverable 54 SENG 321 Calendar	Mar 29-Apr 1	S4 project demo (in TWF classes and Tue lab; no lab on Thu)	10% of project
Deliverable C4	Fri, Apr 1	C4 feedback on S4	5% of project
Last Day of Classes	Fri, Apr 1		
Final Exam	Sat, Apr 16	19:00-22:00 ECS 125	35%

Has most significant effect on overall costs

Project Cost and Effort Estimation

- Objective
 - Rational costing
- Software costing should be carried out objectively
- Accurately predict contractor's development cost
- Software cost estimation is continuous:
 - Starts at proposal stage
 - Continues throughout lifetime of project
 Projects have budgets ...
 - ... thus cost estimation determines if spending is in line with budget
- Measure-of-effort unit
- Staff-hour or staff-month

Types of Projects				
Project types	Customer	Supplier		
In-house	User department	IT department		
Product development	Marketing/sales department	Software department		
COTS-Commercial-of-the-shelf components or products	Company	COTS vendor		
Tender	Company	Supplier		
Contract development	Company	Software house		
Sub-contracting	Supplier	Software house		
Other types				
		10		

- Bottom-up estimation
- Some of these techniques are pathological (i.e., have problems built-in)!
 - → Use more than one method

Final cost is derived by consensus

Project Cost and Effort Estimation Techniques

- 3. Estimation by analogy
 - Applicable when other projects in same application domain have been completed.

- Cost estimated by analogy with completed projects.
- 4. Parkinson's Law
 - Parkinson's Law was first articulated by Cyril Parkinson in a humorous essay in The Economist in 1955:
 "Work expands so as to fill the time available for its completion"
 - Cost determined by available resources rather than by objective assessment
 - If software must be delivered in 12 months ...
 - and 5 people are available ...
 - The technique estimates an effort of 60 person-months

Mythical Man-Month (Brooks) Assigning more programmers to a project running behind schedule will make it even later, due to the time required for the new programmers to learn about the project, as well as the increased communication overhead.

- When N people have to communicate among themselves (without a hierarchy), as N increases, their output M decreases and can even become negative (i.e., the total work remaining at the end of a day is greater than the total work that had been remaining at the beginning of that day, such as when many bugs are created).
- Group Intercommunication Formula: n(n 1) / 2
- Example: 50 developers give 50 \cdot (50 1) / 2 = 1225 channels of communication.

http://en.wikipedia.org/wiki/The_Mythical_Man-Month#The_Mythical_Man-Month

Project Cost and Effort Estimation Techniques

5. Pricing to win

- Estimate depends on customer's budget, not on functionality
- 6. Top-down estimation
 - Estimate established by considering overall functionality
 - Also determine how functionality provided by interacting sub-
 - functions

 Estimates made on basis of logical function rather than with
 - components implementing function.
- 7. Bottom-up estimation
 - Cost of each component estimated
 - All costs totalled → final cost estimate

Comparing Techniques			
Method	Strengths	Weaknesses	
Algorithmic models	Objective, repeatable, analyzable formula Efficient, good for sensitivity analysis Objectively calibrated to experience	•Subjective inputs •Assessment of exceptional circumstances •Calibrated to past , not future	
Expert judgment	 Assessment of interactions, representativeness, exceptional circumstance 	•No better than participants •Biases, incomplete recall	
Analogy	•Based on representative experience	•How representativeness is the experience?	
Parkinson's Law	•Correlates with some experience	•Reinforces poor practice	
Price to win	Often gets the contract	•Generally produces large cost overruns and losses	
Top-down	•System level focus •Efficient	 Less detailed based Less stable 	
Bottom-up	More detailed basis More stable Fosters individual commitments	•May overlook system level costs •Requires more effort	