
Professor Hausi A. Müller PhD PEng FCAE

Department of Computer Science
Faculty of Engineering

University of Victoria

www.engr.uvic.ca/~seng321/
courses1.csc.uvic.ca/courses/201/spring/seng/321

2

SENG 321
Calendar

Announcements
 Wed, March 23

 Quiz 3

 Fri, March 25
 Good Friday
 No class

 Teaching evaluations
 Until April 4

 Tue, March 29

 In Elliot 167
3:30-6:00 pm


 Tue/Wed/Fri, March 29/30,
April 1
 In class and Tue lab demos
 No labs on Thu
 3 presentations per hour
 15 mins per presentation
 Evaluation form

3

Final Exam
 Sat, April 16
 19:00-22:00
 ECS 125

CES—Course Experience Survey
 Your responses are important to me and future students

taking the course; completing the CES is part of good
university citizenship

 If you did not receive the invitation emails from UVic,
simply visit: http://ces.uvic.ca/Blue. You’ll be prompted to
sign into UVic, then redirected to complete your CESs

 You can complete your CES until the last day of classes
on April 4

4

Quiz 3—Course Experience
1. Describe in detail how selected requirements

engineering topics discussed in this course topics could
be beneficial for your career as an engineer or scientist.
Note you are expected to answer this question even if
you are aiming for a different career path than engineer
or scientist.

2. What are selected requirements engineering learning
outcomes and skills acquired in this course that you
should consider including in your resume when applying
for a job as an engineer or scientist. Note you are
expected to answer this question even if you are aiming
for a different career path than engineer or scientist.

5

Project Cost and Effort
Estimation Techniques
 Seven traditional techniques for software cost estimation

1. Algorithmic cost modeling
2. Expert judgment
3. Estimation by analogy
4. Parkinson’s law
5. Pricing to win
6. Top-down estimation
7. Bottom-up estimation

 Some of these techniques are pathological (i.e., have
problems built-in)!
  Use more than one method

6

Method Strengths Weaknesses
Algorithmic
models

•Objective, repeatable, analyzable
formula
•Efficient, good for sensitivity analysis
•Objectively calibrated to experience

•Subjective inputs
•Assessment of exceptional
circumstances
•Calibrated to past, not future

Expert
judgment

•Assessment of interactions,
representativeness, exceptional
circumstance

•No better than participants
•Biases, incomplete recall

Analogy •Based on representative experience •How representativeness is
the experience?

Parkinson’s
Law

•Correlates with some experience •Reinforces poor practice

Price to win •Often gets the contract •Generally produces large
cost overruns and losses

Top-down •System level focus
•Efficient

•Less detailed based
•Less stable

Bottom-up •More detailed basis
•More stable
•Fosters individual commitments

•May overlook system level
costs
•Requires more effort

Comparing Techniques

Combining Techniques
 Motivation

 Each technique has advantages and disadvantages

 For large projects, several techniques should be used
in parallel and results continuously compared.
 If the results predict radically different costs …

 … more information should be sought … and costing process repeated

 Process should continue until estimates converge
 Traditional cost models assume the existence of a firm

set of requirements and a well-developed specification
 Costing carried out with a solid SRS as a basis
 Sometimes requirements and/or specification are changed to make

sure that fixed costs are not exceeded

8

Algorithmic Models

 Systematic approach
 Not necessarily the most accurate
 Mathematical formula used to predict costs
 Based on estimates of
 Project size
 Number of programmers
 Other process and product factors

9

Algorithmic Models

 Have exponential component
 costs do not normally increase linearly with project size.

 As software size increases, extra costs incurred
 communication overhead of larger teams
 more complex configuration management
 more difficult system integration

10

Highly Recommended Reading
Traditional Software Metrics

ftp://ftp.sei.cmu.edu/pub/education/cm12.pdf

Algorithmic Models

 General form of equation: E = a + b • KLOCc

 a = constant factor; local organizational practices, type of software
 b = multiplier includes process, product, and development attributes
 KLOC: measure of software size (lines of code)
 c usually between 0.9 and 1.5

 Halstead [1977]: E = a + 0.7 • KLOC1.50

 Boehm [1981]: E = a + 2.4 • KLOC1.05 TRW

 Walston-Felix [1977]: E = a + 5.2 • KLOC0.91 IBM

 RADC [1977]: E = a + 4.86 • KLOC0.976 Rome Air Develop. Center

 Doty [1984]: E = a + 5.28 • KLOC1.047 Doty Associates

 JPL [1981]: E = a + 2.43 • KLOC0.962 Jet Propulsion Lab
11

Analysis of Algorithmic Models

 All models suffer from same basic difficulties
 Difficult to estimate size at an early project stage
 Usually only specification available at this time
 Function point and object point estimates are easier to

produce than code size … may also be inaccurate
 Estimates of b and c are highly subjective
 Depend on background and experience and vary from

 One person to another
 One model to another
 One company to another
 One domain to another 12

Estimating Size
 Most commonly used metric: lines of source code (LOC)

 Measure of finished system … but of course, we don’t have the system yet

 Size estimation therefore involves estimation by
 Analogy with other projects
 Estimation by ranking sizes of system components, using known reference

components to estimate size; measure previously developed system to
estimate the model parameters a, b, c

 Application of engineering judgement

 Code size estimates uncertain because of dependencies
 Hardware choices
 Software choices
 Commercial DBMS choices
 Middleware choices

13

Functions Points
A better measure than KLOC
 Related to functionality of software rather than size
 Function points computed by counting the following

characteristics
 External inputs and outputs
 User interactions
 External interfaces
 Files or databases used by system

 Each characteristics is individually assessed for complexity
 Each characteristics is given weight for complexity

 3 for simple external inputs
 15 for complex internal files

14

Counting Functions Points
 Count function points

 Multiply each raw count by estimated weight, then sum all values
 Next multiply with project complexity factors

 Degree of distributed processing, amount of code reuse, performance
 Function point analysis can be combined with LOC estimation

techniques
 Function points used to estimate final code size

 Uses historical data
 AVC: average number of lines of code required to implement one function

point
 Code Size = AVC * Number of function points

 Advantage
 Easier to estimate points than LOC early in the development process
 Can be reaadily done with a completed SRS 15

COnstructive COst MOdel
(COCOMO) Barry Boehm

 COCOMO is an algorithmic Software Cost
Estimation Model

 The model uses a basic regression formula, with
parameters that are derived from historical
project data and current project characteristics

16

COnstructive COst MOdel
(COCOMO) Barry Boehm

 One of first empirically-based models for effort
and cost estimation
 Considers wide variety of factors
 Provides values for b, c and project size (KLOC or proxy) of effort

equation

 Projects fall into three categories
 Organic: small team, known environment
 Semidetached: intermediate category—mix of experience, may be

large project but not excessively so
 Embedded: inflexible and constraining environment

17

COnstructive COst MOdel
(COCOMO) Barry Boehm

18

Project Type Size Innovation Deadline /
Constraints

Development
Environment

Organic Small Little Not tight Stable
Embedded Large Greater Tight Complex

hardware
Custom

interfaces
Semi-detached Medium Medium Medium Medium

COnstructive COst MOdel
(COCOMO) Barry Boehm

 Mode and effort formulas
 Organic: E = 2.4 size1.05

 Semidetached: E = 3.0 size1.12

 Embedded: E = 3.6 size1.20

 Examples: size = 200 KLOC
 Organic: E = 2.4 (2001.05) = 626 staff-months = 52 staff-years

 Semi-detached: E = 3.0 * (2001.12) = 1133 staff-months
 Embedded: E = 3.6 * (2001.20) = 2077 staff-months

19

Type Organic Semi-detached Embedded
b 2.4 3.0 3.6
c 1.05 1.12 1.20

E = a + b•KLOCc

COCOMO Intermediate Model
 Intermediate model uses size plus 15 other cost drivers

1. Software reliability
2. Size of application database
3. Complexity
4. Analyst capability
5. Software engineering capability
6. Applications experience
7. Virtual machine experience
8. Programming language expertise
9. Performance requirements
10. Memory constraints
11. Volatility of virtual machine
12. Environment
13. Turnaround time
14. Use of software tools
15. Application of software engineering methods

20

COCOMO Intermediate Model
 Mode + effort formulas

 d: additional cost drivers parameter
 Organic: E = 2.4 * (size1.05) * d
 Semidetached: E = 3.0 * (size1.12) * d
 Embedded: E = 3.6 * (size1.20) * d

 Examples: size = 200 KLOC
 Cost drivers

 0.88 Low reliability
 1.15 high product complexity
 1.13 low application experience
 0.95 high programming language experience
 d = 0.88 * 1.15 * 1.13 * 0.95 = 1.086

 Organic: E = 2.4 (2001.05) * 1.086 = 906 staff-months
 Semi-detached: E = 3.0 * (2001.12) * 1.086 = 1231 staff-months
 Embedded: E = 3.6 * (2001.20) * 1.086 = 2256 staff-months 21

E = a + b•(sizec)d

Summary—Project Cost and
Effort Estimation Techniques

 Variety of cost estimation methods algorithmic
estimation models based on real data and
experience (e.g., IBM, TRW, JPL)
 Challenge: how to translate experience to local situation
 Some success with well-specified problems/domains

 Depend on solid requirements at estimation time
 For many situations this is impossible

 Algorithmic models are from late Seventies & early Eighties
 Today we have very powerful programming environments and reuse

strategies and generate a lot of code—UI, middleware, libraries
 Recommendation

 Combine techniques; one technique alone never suffices 22

SENG 321 Résumé Entries

 Requirements engineering
 Requirements process

 Elicitation, Analysis, Specification, Validation
 Methods, techniques, and tools

 Use case modeling techniques
 Domain analysis and modeling
 Review techniques

 Walkthroughs
 (Formal) inspection and validation
 Inspection meetings
 Inspection checklists

 CRUD (Create, Read, Update, Delete) Matrix
23

SENG 321 Résumé Entries

 Requirements engineering
 Methods, techniques, and tools

 Working with UML
 UML 2.5 (14 diagrams)
 Structural and behavioural diagrams
 Use case, class, interaction, sequence, state,

collaboration, activity diagrams (tutorial)
 Use of UML tools (tutorial)

24

SENG 321 Résumé Entries
 Software life cycle models

 Waterfall and Spiral models
 Requirements analyst

 Interface between customers and developers
 Requirements specification documentation skills
 IEEE Std 830-1998 Requirements Standard and

Specification Template
 Documentation skills

 Visio (tutorial)
 Project (tutorial)

 Project Cost and Effort Estimation Techniques
 COCOMO model (Barry Boehm)

25

SENG 321 Résumé Entries
 Codes of Ethics

 APEGBC
 ACM Software Engineering

 Communication and management skills
 Presentation skills
 Teamwork
 Organization skills
 Leadership skills
 Management skills
 Project management skills
 Time management skills

26

Final Exam SENG 321
Format and Materials
 Format

 3 hours
 Closed books, closed notes, no gadgets
 The same format as the midterm
 Mostly essay style questions

 Slides
 600+ slides posted on the course website

 Midterm
 Similar format and questions
 A couple of questions from midterm (e.g., major phases)

27

Final Review
 Use case modeling techniques

 Use case scenarios
 Process for identifying use cases
 Use case template
 Use case diagrams
 Context diagrams
 Use case mistakes and limitations

 Review techniques
 Walkthroughs
 (Formal) inspection and validation
 Inspection meetings
 Inspection checklists

 CRUD (Create, Read, Update, Delete) Matrix
 Develop a CRUD matrix for a well-known scenario

 For example, bank checking account 28

Final Review
 Codes of Ethics

 APEGBC
 ACM Software Engineering

 UML overview
 Structural and behavioural diagrams
 History of UML
 What do you know about UML and its history?
 Explain the uses of the 14 diagrams in UML 2.0

 Project cost and effort estimation techniques
 Techniques
 Parameters
 Algorithmic models
 Comparison of techniques
 COCOMO model (Barry Boehm)
 Contrast different project cost and effort estimation techniques

29

Course Discussion
 What caught your eye in this course?
 What have you learned in this course?
 How does this course prepare you for your work in

industry?
 How was your group experience?
 What would you do differently?
 Was this course a character-building experience for you?
 What surprised you in this course?
 What did you learn about yourself?
 What did you learn about your team players?

30

The
End

Requirements
Elicitation

Requirements
Analysis

Requirements
Specification

Requirements
Validation

Requirements
Techniques

