
Professor Hausi A. Müller PhD PEng FCAE

Department of Computer Science
Faculty of Engineering

University of Victoria

www.engr.uvic.ca/~seng321/
courses1.csc.uvic.ca/courses/201/spring/seng/321

2

SENG 321
Calendar

Announcements
 Wed, March 23

 Quiz 3

 Fri, March 25
 Good Friday
 No class

 Teaching evaluations
 Until April 4

 Tue, March 29

 In Elliot 167
3:30-6:00 pm

 Tue/Wed/Fri, March 29/30,
April 1
 In class and Tue lab demos
 No labs on Thu
 3 presentations per hour
 15 mins per presentation
 Evaluation form

3

Final Exam
 Sat, April 16
 19:00-22:00
 ECS 125

CES—Course Experience Survey
 Your responses are important to me and future students

taking the course; completing the CES is part of good
university citizenship

 If you did not receive the invitation emails from UVic,
simply visit: http://ces.uvic.ca/Blue. You’ll be prompted to
sign into UVic, then redirected to complete your CESs

 You can complete your CES until the last day of classes
on April 4

4

Quiz 3—Course Experience
1. Describe in detail how selected requirements

engineering topics discussed in this course topics could
be beneficial for your career as an engineer or scientist.
Note you are expected to answer this question even if
you are aiming for a different career path than engineer
or scientist.

2. What are selected requirements engineering learning
outcomes and skills acquired in this course that you
should consider including in your resume when applying
for a job as an engineer or scientist. Note you are
expected to answer this question even if you are aiming
for a different career path than engineer or scientist.

5

Project Cost and Effort
Estimation Techniques
 Seven traditional techniques for software cost estimation

1. Algorithmic cost modeling
2. Expert judgment
3. Estimation by analogy
4. Parkinson’s law
5. Pricing to win
6. Top-down estimation
7. Bottom-up estimation

 Some of these techniques are pathological (i.e., have
problems built-in)!
 Use more than one method

6

Method Strengths Weaknesses
Algorithmic
models

•Objective, repeatable, analyzable
formula
•Efficient, good for sensitivity analysis
•Objectively calibrated to experience

•Subjective inputs
•Assessment of exceptional
circumstances
•Calibrated to past, not future

Expert
judgment

•Assessment of interactions,
representativeness, exceptional
circumstance

•No better than participants
•Biases, incomplete recall

Analogy •Based on representative experience •How representativeness is
the experience?

Parkinson’s
Law

•Correlates with some experience •Reinforces poor practice

Price to win •Often gets the contract •Generally produces large
cost overruns and losses

Top-down •System level focus
•Efficient

•Less detailed based
•Less stable

Bottom-up •More detailed basis
•More stable
•Fosters individual commitments

•May overlook system level
costs
•Requires more effort

Comparing Techniques

Combining Techniques
 Motivation

 Each technique has advantages and disadvantages

 For large projects, several techniques should be used
in parallel and results continuously compared.
 If the results predict radically different costs …

 … more information should be sought … and costing process repeated

 Process should continue until estimates converge
 Traditional cost models assume the existence of a firm

set of requirements and a well-developed specification
 Costing carried out with a solid SRS as a basis
 Sometimes requirements and/or specification are changed to make

sure that fixed costs are not exceeded

8

Algorithmic Models

 Systematic approach
 Not necessarily the most accurate
 Mathematical formula used to predict costs
 Based on estimates of
 Project size
 Number of programmers
 Other process and product factors

9

Algorithmic Models

 Have exponential component
 costs do not normally increase linearly with project size.

 As software size increases, extra costs incurred
 communication overhead of larger teams
 more complex configuration management
 more difficult system integration

10

Highly Recommended Reading
Traditional Software Metrics

ftp://ftp.sei.cmu.edu/pub/education/cm12.pdf

Algorithmic Models

 General form of equation: E = a + b • KLOCc

 a = constant factor; local organizational practices, type of software
 b = multiplier includes process, product, and development attributes
 KLOC: measure of software size (lines of code)
 c usually between 0.9 and 1.5

 Halstead [1977]: E = a + 0.7 • KLOC1.50

 Boehm [1981]: E = a + 2.4 • KLOC1.05 TRW

 Walston-Felix [1977]: E = a + 5.2 • KLOC0.91 IBM

 RADC [1977]: E = a + 4.86 • KLOC0.976 Rome Air Develop. Center

 Doty [1984]: E = a + 5.28 • KLOC1.047 Doty Associates

 JPL [1981]: E = a + 2.43 • KLOC0.962 Jet Propulsion Lab
11

Analysis of Algorithmic Models

 All models suffer from same basic difficulties
 Difficult to estimate size at an early project stage
 Usually only specification available at this time
 Function point and object point estimates are easier to

produce than code size … may also be inaccurate
 Estimates of b and c are highly subjective
 Depend on background and experience and vary from

 One person to another
 One model to another
 One company to another
 One domain to another 12

Estimating Size
 Most commonly used metric: lines of source code (LOC)

 Measure of finished system … but of course, we don’t have the system yet

 Size estimation therefore involves estimation by
 Analogy with other projects
 Estimation by ranking sizes of system components, using known reference

components to estimate size; measure previously developed system to
estimate the model parameters a, b, c

 Application of engineering judgement

 Code size estimates uncertain because of dependencies
 Hardware choices
 Software choices
 Commercial DBMS choices
 Middleware choices

13

Functions Points
A better measure than KLOC
 Related to functionality of software rather than size
 Function points computed by counting the following

characteristics
 External inputs and outputs
 User interactions
 External interfaces
 Files or databases used by system

 Each characteristics is individually assessed for complexity
 Each characteristics is given weight for complexity

 3 for simple external inputs
 15 for complex internal files

14

Counting Functions Points
 Count function points

 Multiply each raw count by estimated weight, then sum all values
 Next multiply with project complexity factors

 Degree of distributed processing, amount of code reuse, performance
 Function point analysis can be combined with LOC estimation

techniques
 Function points used to estimate final code size

 Uses historical data
 AVC: average number of lines of code required to implement one function

point
 Code Size = AVC * Number of function points

 Advantage
 Easier to estimate points than LOC early in the development process
 Can be reaadily done with a completed SRS 15

COnstructive COst MOdel
(COCOMO) Barry Boehm

 COCOMO is an algorithmic Software Cost
Estimation Model

 The model uses a basic regression formula, with
parameters that are derived from historical
project data and current project characteristics

16

COnstructive COst MOdel
(COCOMO) Barry Boehm

 One of first empirically-based models for effort
and cost estimation
 Considers wide variety of factors
 Provides values for b, c and project size (KLOC or proxy) of effort

equation

 Projects fall into three categories
 Organic: small team, known environment
 Semidetached: intermediate category—mix of experience, may be

large project but not excessively so
 Embedded: inflexible and constraining environment

17

COnstructive COst MOdel
(COCOMO) Barry Boehm

18

Project Type Size Innovation Deadline /
Constraints

Development
Environment

Organic Small Little Not tight Stable
Embedded Large Greater Tight Complex

hardware
Custom

interfaces
Semi-detached Medium Medium Medium Medium

COnstructive COst MOdel
(COCOMO) Barry Boehm

 Mode and effort formulas
 Organic: E = 2.4 size1.05

 Semidetached: E = 3.0 size1.12

 Embedded: E = 3.6 size1.20

 Examples: size = 200 KLOC
 Organic: E = 2.4 (2001.05) = 626 staff-months = 52 staff-years

 Semi-detached: E = 3.0 * (2001.12) = 1133 staff-months
 Embedded: E = 3.6 * (2001.20) = 2077 staff-months

19

Type Organic Semi-detached Embedded
b 2.4 3.0 3.6
c 1.05 1.12 1.20

E = a + b•KLOCc

COCOMO Intermediate Model
 Intermediate model uses size plus 15 other cost drivers

1. Software reliability
2. Size of application database
3. Complexity
4. Analyst capability
5. Software engineering capability
6. Applications experience
7. Virtual machine experience
8. Programming language expertise
9. Performance requirements
10. Memory constraints
11. Volatility of virtual machine
12. Environment
13. Turnaround time
14. Use of software tools
15. Application of software engineering methods

20

COCOMO Intermediate Model
 Mode + effort formulas

 d: additional cost drivers parameter
 Organic: E = 2.4 * (size1.05) * d
 Semidetached: E = 3.0 * (size1.12) * d
 Embedded: E = 3.6 * (size1.20) * d

 Examples: size = 200 KLOC
 Cost drivers

 0.88 Low reliability
 1.15 high product complexity
 1.13 low application experience
 0.95 high programming language experience
 d = 0.88 * 1.15 * 1.13 * 0.95 = 1.086

 Organic: E = 2.4 (2001.05) * 1.086 = 906 staff-months
 Semi-detached: E = 3.0 * (2001.12) * 1.086 = 1231 staff-months
 Embedded: E = 3.6 * (2001.20) * 1.086 = 2256 staff-months 21

E = a + b•(sizec)d

Summary—Project Cost and
Effort Estimation Techniques

 Variety of cost estimation methods algorithmic
estimation models based on real data and
experience (e.g., IBM, TRW, JPL)
 Challenge: how to translate experience to local situation
 Some success with well-specified problems/domains

 Depend on solid requirements at estimation time
 For many situations this is impossible

 Algorithmic models are from late Seventies & early Eighties
 Today we have very powerful programming environments and reuse

strategies and generate a lot of code—UI, middleware, libraries
 Recommendation

 Combine techniques; one technique alone never suffices 22

SENG 321 Résumé Entries

 Requirements engineering
 Requirements process

 Elicitation, Analysis, Specification, Validation
 Methods, techniques, and tools

 Use case modeling techniques
 Domain analysis and modeling
 Review techniques

 Walkthroughs
 (Formal) inspection and validation
 Inspection meetings
 Inspection checklists

 CRUD (Create, Read, Update, Delete) Matrix
23

SENG 321 Résumé Entries

 Requirements engineering
 Methods, techniques, and tools

 Working with UML
 UML 2.5 (14 diagrams)
 Structural and behavioural diagrams
 Use case, class, interaction, sequence, state,

collaboration, activity diagrams (tutorial)
 Use of UML tools (tutorial)

24

SENG 321 Résumé Entries
 Software life cycle models

 Waterfall and Spiral models
 Requirements analyst

 Interface between customers and developers
 Requirements specification documentation skills
 IEEE Std 830-1998 Requirements Standard and

Specification Template
 Documentation skills

 Visio (tutorial)
 Project (tutorial)

 Project Cost and Effort Estimation Techniques
 COCOMO model (Barry Boehm)

25

SENG 321 Résumé Entries
 Codes of Ethics

 APEGBC
 ACM Software Engineering

 Communication and management skills
 Presentation skills
 Teamwork
 Organization skills
 Leadership skills
 Management skills
 Project management skills
 Time management skills

26

Final Exam SENG 321
Format and Materials
 Format

 3 hours
 Closed books, closed notes, no gadgets
 The same format as the midterm
 Mostly essay style questions

 Slides
 600+ slides posted on the course website

 Midterm
 Similar format and questions
 A couple of questions from midterm (e.g., major phases)

27

Final Review
 Use case modeling techniques

 Use case scenarios
 Process for identifying use cases
 Use case template
 Use case diagrams
 Context diagrams
 Use case mistakes and limitations

 Review techniques
 Walkthroughs
 (Formal) inspection and validation
 Inspection meetings
 Inspection checklists

 CRUD (Create, Read, Update, Delete) Matrix
 Develop a CRUD matrix for a well-known scenario

 For example, bank checking account 28

Final Review
 Codes of Ethics

 APEGBC
 ACM Software Engineering

 UML overview
 Structural and behavioural diagrams
 History of UML
 What do you know about UML and its history?
 Explain the uses of the 14 diagrams in UML 2.0

 Project cost and effort estimation techniques
 Techniques
 Parameters
 Algorithmic models
 Comparison of techniques
 COCOMO model (Barry Boehm)
 Contrast different project cost and effort estimation techniques

29

Course Discussion
 What caught your eye in this course?
 What have you learned in this course?
 How does this course prepare you for your work in

industry?
 How was your group experience?
 What would you do differently?
 Was this course a character-building experience for you?
 What surprised you in this course?
 What did you learn about yourself?
 What did you learn about your team players?

30

The
End

Requirements
Elicitation

Requirements
Analysis

Requirements
Specification

Requirements
Validation

Requirements
Techniques

