
Professor Hausi A. Müller PhD PEng FCAE

Lorena Castañeda
Department of Computer Science

Faculty of Engineering
University of Victoria

http://www.engr.uvic.ca/~seng321/

https://courses1.csc.uvic.ca/courses/201/spring/seng/321

Project Deadlines and Marks
1. Call for Project Proposals 6 Jan (Class)
2. Request for Proposal (RFP) 8 Jan
3. Project selection 12 Jan (Lab)
4. Team selection 14 Jan (Lab)
5. Informal Requirements Definition (S0) 5% 21 Jan (Lab)
6. Project website up and running (S0) 5% 21 Jan (Lab)
7. Customer Feedback on S0 (C0) 5% 26 Jan (Lab)
8. Formal Requirements Spec (S1) 10% 16 Feb (Lab)
9. Customer Feedback on S1 (C1) 5% 18 Feb (Lab)
10. Detailed Requirements Spec (S2a) 10% 1 Mar (Lab)
11. Prototype demo (S2b) 5% 3 Mar (Lab)
12. Customer Feedback on S2a-b (C2) 5% 8 Mar (Lab)
13. Final Requirements Spec (S3a) 15% 15 Mar (Lab)
14. User Manual (S3b) 10% 22 Mar (Lab)
15. Customer Feedback on S3a-b (C3) 5% 24 Mar (Lab)
16. Demo Final Project (S4) 10% 29,31 Mar (Lab)
17. Customer Feedback on S4 (C4) 5% 29,31 Mar (Lab)
18. Instructor and TA Evaluations (S5) 5% 1 Apr

Students must participate in all project presentati ons in class & labs
No show results in a 25% reduction in the mark for that presentation

91

What is Quality (Pressman)?

� Conformance to explicitly stated requirements, standards,
and implicit characteristics

� Functional and non-functional requirements
� Foundation from which quality is measured
� Lack of conformance � � lack of quality

� Explicitly documented development standards
� Development criteria guide manner software engineered
� Criteria not followed � lack of quality

� Implicit characteristics expected of professionally developed
software
� Often go unmentioned (e.g., desire for good maintainability)
� Even if explicit requirements met, failing to meet implicit

requirements suggest suspect software quality 92

Software qualities

� Software engineering is concerned with software
qualities

� Qualities (a.k.a. “ilities”) are goals in the practice of
software engineering

� The qualities are usually expressed as non-functional
requirements during the early design stages

93

Software qualities …
� External qualities

� visible to the user
� reliability, efficiency, usability

� Internal qualities
� the concern of developers
� they help developers achieve external qualities
� verifiability, maintainability, extensibility, evolvability, adaptability

� Product qualities
� concern the developed artifacts
� maintainability, understandability, performance

� Process qualities
� deal with the development activity
� products are developed through process
� maintainability, productivity, timeliness 94

Software Development Life
Cycles (SDLC)

“You’ve got to be very careful if you don’t
know where you’re going, because you
might not get there.”

Yogi Berra

Capability Maturity Model (CMM)

• A bench-mark for measuring the maturity of
an organization’s software process

• CMM defines 5 levels of process maturity
based on certain Key Process Areas (KPA)

CMM Levels
Level 5 – Optimizing (< 1%)

• -- process change management
• -- technology change management
• -- defect prevention

Level 4 – Managed (< 5%)
• -- software quality management
• -- quantitative process management

Level 3 – Defined (< 10%)
• -- peer reviews
• -- intergroup coordination
• -- software product engineering
• -- integrated software management
• -- training program
• -- organization process definition
• -- organization process focus

Level 2 – Repeatable (~ 15%)
• -- software configuration

management
• -- software quality

assurance
• -- software project

tracking and oversight
• -- software project

planning
• -- requirements

management
Level 1 – Initial (~ 70%)

Yogi Berra

CMMI (Capability Maturity
Model Integration)

� CMM 1990
� Lack of integration
� Limitation of the Key Performance Areas (KPA)
� Activity-based approach
� Paperwork

� CMMI 2006, areas of interest:
� Product and service development
� Service establishment, management
� Product and service acquisition

98

Level 5 - Optimizing
Level 4 - Quantitatively Managed
Level 3 – Defined
Level 2 – Managed
Level 1 – Initial

Software Development Life
Cycles (SDLC) Model

A framework that describes the activities
performed at each stage of a software
development project.

Waterfall Model
• Requirements – defines

needed information, function,
behavior, performance and
interfaces.

• Design – data structures,
software architecture, interface
representations, algorithmic
details.

• Implementation – source
code, database, user
documentation, testing.

Waterfall Strengths

• Easy to understand, easy to use
• Provides structure to inexperienced staff
• Milestones are well understood
• Sets requirements stability
• Good for management control (plan, staff, track)
• Works well when quality is more important than

cost or schedule

Waterfall Deficiencies

• All requirements must be known upfront
• Deliverables created for each phase are

considered frozen – inhibits flexibility
• Can give a false impression of progress
• Does not reflect problem-solving nature of

software development – iterations of phases
• Integration is one big bang at the end
• Little opportunity for customer to preview the

system (until it may be too late)

When to use the Waterfall Model

• Requirements are very well known
• Product definition is stable
• Technology is understood
• New version of an existing product
• Porting an existing product to a new platform.

• High risk for new systems because of
specification and design problems.

• Low risk for well-understood developments using
familiar technology.

V-Shaped SDLC Model
• A variant of the

Waterfall that
emphasizes the
verification and
validation of the
product.

• Testing of the
product is planned
in parallel with a
corresponding
phase of
development

V-Shaped Steps

• Project and Requirements
Planning – allocate resources

• Product Requirements and
Specification Analysis – complete
specification of the software
system

• Architecture or High-Level Design
– defines how software functions
fulfill the design

• Detailed Design – develop
algorithms for each architectural
component

• Production, operation and
maintenance – provide for
enhancement and corrections

• System and acceptance testing –
check the entire software system
in its environment

• Integration and Testing – check
that modules interconnect
correctly

• Unit testing – check that each
module acts as expected

•Coding – transform algorithms into
software

V-Shaped Strengths

• Emphasize planning for verification and
validation of the product in early stages of
product development

• Each deliverable must be testable
• Project management can track progress by

milestones
• Easy to use

V-Shaped Weaknesses

• Does not easily handle concurrent events
• Does not handle iterations or phases
• Does not easily handle dynamic changes in

requirements
• Does not contain risk analysis activities

When to use the V-Shaped
Model

• Excellent choice for systems requiring high
reliability – hospital patient control
applications

• All requirements are known up-front
• When it can be modified to handle changing

requirements beyond analysis phase
• Solution and technology are known

Prototyping: Basic Steps

• Identify basic requirements
• Including input and output info
• Details (e.g., security) generally ignored

• Develop initial prototype
• UI first

• Review
• Customers/end –users review and give feedback

• Revise and enhance the prototype & specs
• Negotiation about scope of contract may be

necessary

Dimensions of Prototyping

• Horizontal prototype
• Broad view of entire system/sub-system
• Focus is on user interaction more than low-level

system functionality (e.g. , databsae access)
• Useful for:

• Confirmation of UI requirements and system scope
• Demonstration version of the system to obtain buy-in

from business/customers
• Develop preliminary estimates of development time,

cost, effort

Dimensions of Prototyping

• Vertical prototype
• More complete elaboration of a single sub-system

or function
• Useful for:

• Obtaining detailed requirements for a given function
• Refining database design
• Obtaining info on system interface needs
• Clarifying complex requirements by drilling down to

actual system functionality

Types of Prototyping

• Throwaway /rapid/close-ended prototyping
• Creation of a model that will be discarded rather

than becoming part of the final delivered
software

• After preliminary requirements gathering, used to
visually show the users what their requirements
may look like when implemented

• Focus is on quickly developing the model
• not on good programming practices
• Can Wizard of Oz things

Throwaway Prototyping steps

• Write preliminary requirements
• Design the prototype
• User experiences/uses the prototype,

specifies new requirements
• Repeat if necessary
• Write the final requirements
• Develop the real products

Evolutionary Prototyping

• Aka breadboard prototyping
• Goal is to build a very robust prototype in a

structured manner and constantly refine it
• The evolutionary prototype forms the heart of

the new system and is added to and refined
• Allow the development team to add features

or make changes that were not conceived in
the initial requirements

Evolutionary Prototyping steps

• Developers build a prototype during the
requirements phase

• Prototype is evaluated by end users
• Users give corrective feedback
• Developers further refine the prototype
• When the user is satisfied, the prototype

code is brought up to the standards needed
for a final product.

Evolutionary Prototyping Strengths

• Customers can “see” the system requirements
as they are being gathered

• Developers learn from customers
• A more accurate end product
• Unexpected requirements accommodated
• Allows for flexible design and development
• Steady, visible signs of progress produced
• Interaction with the prototype stimulates

awareness of additional needed functionality

Incremental Prototyping

• Final product built as separate prototypes
• At the end, the prototypes are merged into a

final design

Extreme Prototyping

• Often used for web applications
• Development broken down into 3 phases,

each based on the preceding 1
• Static prototype consisting of HTML pages
• Screens are programmed and fully functional

using a simulated services layer
• Fully functional UI is developed with little regard to

the services, other than their contract

• Services are implemented

Prototyping Advantages

• Reduced time and cost
• Can improve the quality of requirements and

specifications provided to developers
• Early determination of what the user really wants can result

in faster and less expensive software

• Improved/increased user involvement
• User can see and interact with the prototype,

allowing them to provide better/more complete
feedback and specs

• Misunderstandings/miscommunications revealed
• Final product more likely to satisfy their desired

look/feel/performance

Disadvantages of Prototyping 1

• Insufficient analysis
• Focus on limited prototype can distract

developers from analyzing complete project
• May overlook better solutions
• Conversion of limited prototypes into poorly

engineered final projects that are hard to maintain
• Limited functionality may not scale well if used as

the basis of a final deliverable
• May not be noticed if developers too focused on

building prototype as a model

Disadvantages of Prototyping 2

• User confusion of prototype and finished
system
• Users can think that a prototype (intended to be

thrown away) is actually a final system that needs
to be polished
• Unaware of the scope of programming needed to give

prototype robust functionality

• Users can become attached to features included
in prototype for consideration and then removed
from final specification

Disadvantages of Prototyping 3

• Developer attachment to prototype
• If spend a great deal of time/effort to produce,

may become attached
• Might try to attempt to convert a limited prototype

into a final system
• Bad if the prototype does not have an appropriate

underlying architecture

Disadvantages of Prototyping 4

• Excessive development time of the prototype
• Prototyping supposed to be done quickly
• If developers lose sight of this, can try to build a

prototype that is too complex
• For throw away prototypes, the benefits realized

from the prototype (precise requirements) may not
offset the time spent in developing the prototype –
expected productivity reduced

• Users can be stuck in debates over prototype
details and hold up development process

Disadvantages of Prototyping 5

• Expense of implementing prototyping
• Start up costs of prototyping may be high
• Expensive to change development methodologies

in place (re-training, re-tooling)
• Slow development if proper training not in place

• High expectations for productivity unrealistic if
insufficient recognition of the learning curve

• Lower productivity can result if overlook the need
to develop corporate and project specific
underlying structure to support the technology

Best Uses of Prototyping

• Most beneficial for systems that will have
many interactions with end users

• The greater the interaction between the
computer and the user, the greater the
benefit of building a quick system for the user
to play with

• Especially good for designing good human-
computer interfaces

Life Cycle Models
Spiral model
� Barry Boehm

� A Spiral Model of Software Development and Enhancement, ACM
SIGSOFT Software Engineering Notes, Aug 1986

� A Spiral Model of Software Development and Enhancement, IEEE
Computer, Vol. 21, No. 5, pp 61-72, May 1988

� Basic idea: evolutionary development
� Using the waterfall model for each step or cycle
� Intended to help manage risks by providing feedback along the way
� Don't define in detail the entire system at first; develop prototype
� Developers should only define the highest priority features
� Define and implement those, then get feedback from users/customers
� This feedback distinguishes “evolutionary” from “incremental”

development
� With this knowledge, developers then go back to define and implement

more features in smaller chunks

Model is risk-driven
Iterative requirements analysis 126

Risk Analysis

Prototype

Planning

Validation

Definition

127

Spiral Model Strengths

• Provides early indication of insurmountable
risks, without much cost

• Users see the system early because of rapid
prototyping tools

• Critical high-risk functions are developed first
• The design does not have to be perfect
• Users can be closely tied to all lifecycle steps
• Early and frequent feedback from users
• Cumulative costs assessed frequently

Spiral Model Weaknesses
� Time spent for evaluating risks too large for small or

low-risk projects
� Time spent planning, resetting objectives, doing risk

analysis and prototyping may be excessive
� The model is complex
� Risk assessment expertise is required
� Spiral may continue indefinitely
� Developers must be reassigned during non-

development phase activities
� May be hard to define objective, verifiable milestones

that indicate readiness to proceed through the next
iteration

When to use Spiral Model

• When creation of a prototype is appropriate
• When costs and risk evaluation is important
• For medium to high-risk projects
• Long-term project commitment unwise because of

potential changes to economic priorities
• Users are unsure of their needs
• Requirements are complex
• New product line
• Significant changes are expected (research and

exploration)

Agile SDLCs

• Speed up or bypass one or more life cycle
phases

• Usually less formal and reduced scope
• Used for time-critical applications
• Used in organizations that employ disciplined

methods

Some Agile Methods

• Rapid Application Development (RAD)
• Incremental SDLC
• Scrum
• Extreme Programming (XP)
• Adaptive Software Development (ASD)
• Feature Driven Development (FDD)
• Crystal Clear
• Dynamic Software Development Method (DSDM)
• Rational Unify Process (RUP)

Rapid Application Development (RAD)

Rapid Application Development (RAD)

Rapid Application Model (RAD)

• Requirements planning phase (structured
discussion of business problems)

• User description phase – automated tools
capture information from users

• Construction phase – productivity tools, such as
code generators, screen generators, etc. inside
a time-box. (“Do until done”)

• Cutover phase -- installation of the system, user
acceptance testing and user training

Requirements Planning Phase

• Combines elements of the system planning
and systems analysis phases of the System
Development Life Cycle (SDLC).

• Users, managers, and IT staff members
discuss and agree on business needs,
project scope, constraints, and system
requirements.

• It ends when the team agrees on the key
issues and obtains management
authorization to continue.

User Design Phase
• Users interact with systems analysts and

develop models and prototypes that represent all
system processes, inputs, and outputs.

• Typically use a combination of Joint Application
Development (JAD) techniques and CASE tools
to translate user needs into working models.

• A continuous interactive process that allows
users to understand, modify, and eventually
approve a working model of the system that
meets their needs.

Construction Phase

• Focuses on program and application
development task similar to the SDLC.

• However, users continue to participate and
can still suggest changes or improvements as
actual screens or reports are developed.

• Its tasks are programming and application
development, coding, unit-integration, and
system testing.

Cutover Phase

• Resembles the final tasks in the SDLC
implementation phase.

• Compared with traditional methods, the entire
process is compressed. As a result, the new
system is built, delivered, and placed in
operation much sooner.

• Tasks are data conversion, full-scale testing,
system changeover, user training.

RAD Strengths

• Reduced cycle time and improved productivity
with fewer people means lower costs

• Time-box approach mitigates cost and schedule
risk

• Customer involved throughout the complete
cycle minimizes risk of not achieving customer
satisfaction and business needs

• Focus moves from documentation to code
(WYSIWYG).

• Uses modeling concepts to capture information
about business, data, and processes.

RAD Weaknesses

• Accelerated development process
must give quick responses to the user

• Risk of never achieving closure
• Hard to use with legacy systems
• Requires a system that can be

modularized
• Developers and customers must be

committed to rapid-fire activities in an
abbreviated time frame.

When to use RAD

• Reasonably well-known requirements
• User involved throughout the life cycle
• Project can be time-boxed
• Functionality delivered in increments
• High performance not required
• Low technical risks
• System can be modularized

