
1/18/2016

1

Professor Hausi A. Müller PhD PEng FCAE

Lorena Castañeda
Department of Computer Science

Faculty of Engineering
University of Victoria

http://www.engr.uvic.ca/~seng321/

https://courses1.csc.uvic.ca/courses/201/spring/seng/321

Project Deadlines and Marks
1. Call for Project Proposals 6 Jan (Class)
2. Request for Proposal (RFP) 8 Jan
3. Project selection 12 Jan (Lab)
4. Team selection 14 Jan (Lab)
5. Informal Requirements Definition (S0) 5% 21 Jan (Lab)
6. Project website up and running (S0) 5% 21 Jan (Lab)
7. Customer Feedback on S0 (C0) 5% 26 Jan (Lab)
8. Formal Requirements Spec (S1) 10% 16 Feb (Lab)
9. Customer Feedback on S1 (C1) 5% 18 Feb (Lab)
10. Detailed Requirements Spec (S2a) 10% 1 Mar (Lab)
11. Prototype demo (S2b) 5% 3 Mar (Lab)
12. Customer Feedback on S2a-b (C2) 5% 8 Mar (Lab)
13. Final Requirements Spec (S3a) 15% 15 Mar (Lab)
14. User Manual (S3b) 10% 22 Mar (Lab)
15. Customer Feedback on S3a-b (C3) 5% 24 Mar (Lab)
16. Demo Final Project (S4) 10% 29,31 Mar (Lab)
17. Customer Feedback on S4 (C4) 5% 29,31 Mar (Lab)
18. Instructor and TA Evaluations (S5) 5% 1 Apr

Students must participate in all project presentati ons in class & labs
No show results in a 25% reduction in the mark for that presentation

91

What is Quality (Pressman)?

� Conformance to explicitly stated requirements, standards,
and implicit characteristics

� Functional and non-functional requirements
� Foundation from which quality is measured

� Lack of conformance � � lack of quality

� Explicitly documented development standards
� Development criteria guide manner software engineered

� Criteria not followed � lack of quality

� Implicit characteristics expected of professionally developed
software
� Often go unmentioned (e.g., desire for good maintainability)

� Even if explicit requirements met, failing to meet implicit
requirements suggest suspect software quality 92

Software qualities

� Software engineering is concerned with software
qualities

� Qualities (a.k.a. “ilities”) are goals in the practice of
software engineering

� The qualities are usually expressed as non-functional
requirements during the early design stages

93

Software qualities …
� External qualities

� visible to the user
� reliability, efficiency, usability

� Internal qualities
� the concern of developers
� they help developers achieve external qualities
� verifiability, maintainability, extensibility, evolvability, adaptability

� Product qualities

� concern the developed artifacts

� maintainability, understandability, performance

� Process qualities

� deal with the development activity

� products are developed through process

� maintainability, productivity, timeliness 94

Software Development Life
Cycles (SDLC)

“You’ve got to be very careful if you don’t
know where you’re going, because you
might not get there.”

Yogi Berra

1/18/2016

2

Capability Maturity Model (CMM)

• A bench-mark for measuring the maturity of
an organization’s software process

• CMM defines 5 levels of process maturity
based on certain Key Process Areas (KPA)

CMM Levels
Level 5 – Optimizing (< 1%)

• -- process change management
• -- technology change management
• -- defect prevention

Level 4 – Managed (< 5%)
• -- software quality management
• -- quantitative process management

Level 3 – Defined (< 10%)
• -- peer reviews
• -- intergroup coordination
• -- software product engineering
• -- integrated software management
• -- training program
• -- organization process definition
• -- organization process focus

Level 2 – Repeatable (~ 15%)
• -- software configuration

management
• -- software quality

assurance
• -- software project

tracking and oversight
• -- software project

planning
• -- requirements

management
Level 1 – Initial (~ 70%)

Yogi Berra

CMMI (Capability Maturity
Model Integration)

� CMM 1990

� Lack of integration

� Limitation of the Key Performance Areas (KPA)

� Activity-based approach

� Paperwork

� CMMI 2006, areas of interest:

� Product and service development

� Service establishment, management

� Product and service acquisition

98

Level 5 - Optimizing
Level 4 - Quantitatively Managed
Level 3 – Defined
Level 2 – Managed
Level 1 – Initial

Software Development Life
Cycles (SDLC) Model

A framework that describes the activities
performed at each stage of a software
development project.

Waterfall Model
• Requirements – defines

needed information, function,
behavior, performance and
interfaces.

• Design – data structures,
software architecture, interface
representations, algorithmic
details.

• Implementation – source
code, database, user
documentation, testing.

Waterfall Strengths

• Easy to understand, easy to use
• Provides structure to inexperienced staff
• Milestones are well understood
• Sets requirements stability
• Good for management control (plan, staff, track)
• Works well when quality is more important than

cost or schedule

1/18/2016

3

Waterfall Deficiencies

• All requirements must be known upfront
• Deliverables created for each phase are

considered frozen – inhibits flexibility
• Can give a false impression of progress
• Does not reflect problem-solving nature of

software development – iterations of phases
• Integration is one big bang at the end
• Little opportunity for customer to preview the

system (until it may be too late)

When to use the Waterfall Model

• Requirements are very well known
• Product definition is stable
• Technology is understood
• New version of an existing product
• Porting an existing product to a new platform.

• High risk for new systems because of
specification and design problems.

• Low risk for well-understood developments using
familiar technology.

V-Shaped SDLC Model
• A variant of the

Waterfall that
emphasizes the
verification and
validation of the
product.

• Testing of the
product is planned
in parallel with a
corresponding
phase of
development

V-Shaped Steps

• Project and Requirements
Planning – allocate resources

• Product Requirements and
Specification Analysis – complete
specification of the software
system

• Architecture or High-Level Design
– defines how software functions
fulfill the design

• Detailed Design – develop
algorithms for each architectural
component

• Production, operation and
maintenance – provide for
enhancement and corrections

• System and acceptance testing –
check the entire software system
in its environment

• Integration and Testing – check
that modules interconnect
correctly

• Unit testing – check that each
module acts as expected

•Coding – transform algorithms into
software

V-Shaped Strengths

• Emphasize planning for verification and
validation of the product in early stages of
product development

• Each deliverable must be testable
• Project management can track progress by

milestones
• Easy to use

V-Shaped Weaknesses

• Does not easily handle concurrent events
• Does not handle iterations or phases
• Does not easily handle dynamic changes in

requirements
• Does not contain risk analysis activities

1/18/2016

4

When to use the V-Shaped
Model

• Excellent choice for systems requiring high
reliability – hospital patient control
applications

• All requirements are known up-front
• When it can be modified to handle changing

requirements beyond analysis phase
• Solution and technology are known

Prototyping: Basic Steps

• Identify basic requirements
• Including input and output info
• Details (e.g., security) generally ignored

• Develop initial prototype
• UI first

• Review
• Customers/end –users review and give feedback

• Revise and enhance the prototype & specs
• Negotiation about scope of contract may be

necessary

Dimensions of Prototyping

• Horizontal prototype
• Broad view of entire system/sub-system

• Focus is on user interaction more than low-level
system functionality (e.g. , databsae access)

• Useful for:
• Confirmation of UI requirements and system scope
• Demonstration version of the system to obtain buy-in

from business/customers
• Develop preliminary estimates of development time,

cost, effort

Dimensions of Prototyping

• Vertical prototype
• More complete elaboration of a single sub-system

or function
• Useful for:

• Obtaining detailed requirements for a given function
• Refining database design
• Obtaining info on system interface needs
• Clarifying complex requirements by drilling down to

actual system functionality

Types of Prototyping

• Throwaway /rapid/close-ended prototyping
• Creation of a model that will be discarded rather

than becoming part of the final delivered
software

• After preliminary requirements gathering, used to
visually show the users what their requirements
may look like when implemented

• Focus is on quickly developing the model
• not on good programming practices
• Can Wizard of Oz things

Throwaway Prototyping steps

• Write preliminary requirements
• Design the prototype
• User experiences/uses the prototype,

specifies new requirements
• Repeat if necessary
• Write the final requirements
• Develop the real products

1/18/2016

5

Evolutionary Prototyping

• Aka breadboard prototyping
• Goal is to build a very robust prototype in a

structured manner and constantly refine it
• The evolutionary prototype forms the heart of

the new system and is added to and refined
• Allow the development team to add features

or make changes that were not conceived in
the initial requirements

Evolutionary Prototyping steps

• Developers build a prototype during the
requirements phase

• Prototype is evaluated by end users
• Users give corrective feedback
• Developers further refine the prototype
• When the user is satisfied, the prototype

code is brought up to the standards needed
for a final product.

Evolutionary Prototyping Strengths

• Customers can “see” the system requirements
as they are being gathered

• Developers learn from customers
• A more accurate end product
• Unexpected requirements accommodated
• Allows for flexible design and development
• Steady, visible signs of progress produced
• Interaction with the prototype stimulates

awareness of additional needed functionality

Incremental Prototyping

• Final product built as separate prototypes
• At the end, the prototypes are merged into a

final design

Extreme Prototyping

• Often used for web applications
• Development broken down into 3 phases,

each based on the preceding 1
• Static prototype consisting of HTML pages
• Screens are programmed and fully functional

using a simulated services layer
• Fully functional UI is developed with little regard to

the services, other than their contract

• Services are implemented

Prototyping Advantages

• Reduced time and cost
• Can improve the quality of requirements and

specifications provided to developers
• Early determination of what the user really wants can result

in faster and less expensive software

• Improved/increased user involvement
• User can see and interact with the prototype,

allowing them to provide better/more complete
feedback and specs

• Misunderstandings/miscommunications revealed
• Final product more likely to satisfy their desired

look/feel/performance

1/18/2016

6

Disadvantages of Prototyping 1

• Insufficient analysis
• Focus on limited prototype can distract

developers from analyzing complete project
• May overlook better solutions
• Conversion of limited prototypes into poorly

engineered final projects that are hard to maintain
• Limited functionality may not scale well if used as

the basis of a final deliverable
• May not be noticed if developers too focused on

building prototype as a model

Disadvantages of Prototyping 2

• User confusion of prototype and finished
system
• Users can think that a prototype (intended to be

thrown away) is actually a final system that needs
to be polished
• Unaware of the scope of programming needed to give

prototype robust functionality

• Users can become attached to features included
in prototype for consideration and then removed
from final specification

Disadvantages of Prototyping 3

• Developer attachment to prototype
• If spend a great deal of time/effort to produce,

may become attached
• Might try to attempt to convert a limited prototype

into a final system
• Bad if the prototype does not have an appropriate

underlying architecture

Disadvantages of Prototyping 4

• Excessive development time of the prototype
• Prototyping supposed to be done quickly

• If developers lose sight of this, can try to build a
prototype that is too complex

• For throw away prototypes, the benefits realized
from the prototype (precise requirements) may not
offset the time spent in developing the prototype –
expected productivity reduced

• Users can be stuck in debates over prototype
details and hold up development process

Disadvantages of Prototyping 5

• Expense of implementing prototyping
• Start up costs of prototyping may be high

• Expensive to change development methodologies
in place (re-training, re-tooling)

• Slow development if proper training not in place
• High expectations for productivity unrealistic if

insufficient recognition of the learning curve

• Lower productivity can result if overlook the need
to develop corporate and project specific
underlying structure to support the technology

Best Uses of Prototyping

• Most beneficial for systems that will have
many interactions with end users

• The greater the interaction between the
computer and the user, the greater the
benefit of building a quick system for the user
to play with

• Especially good for designing good human-
computer interfaces

1/18/2016

7

Life Cycle Models
Spiral model
� Barry Boehm

� A Spiral Model of Software Development and Enhancement, ACM
SIGSOFT Software Engineering Notes, Aug 1986

� A Spiral Model of Software Development and Enhancement, IEEE
Computer, Vol. 21, No. 5, pp 61-72, May 1988

� Basic idea: evolutionary development
� Using the waterfall model for each step or cycle
� Intended to help manage risks by providing feedback along the way
� Don't define in detail the entire system at first; develop prototype
� Developers should only define the highest priority features
� Define and implement those, then get feedback from users/customers
� This feedback distinguishes “evolutionary” from “incremental”

development
� With this knowledge, developers then go back to define and implement

more features in smaller chunks

Model is risk-driven
Iterative requirements analysis 126

Risk Analysis

Prototype

Planning

Validation

Definition

127

Spiral Model Strengths

• Provides early indication of insurmountable
risks, without much cost

• Users see the system early because of rapid
prototyping tools

• Critical high-risk functions are developed first
• The design does not have to be perfect
• Users can be closely tied to all lifecycle steps
• Early and frequent feedback from users
• Cumulative costs assessed frequently

Spiral Model Weaknesses
� Time spent for evaluating risks too large for small or

low-risk projects
� Time spent planning, resetting objectives, doing risk

analysis and prototyping may be excessive
� The model is complex
� Risk assessment expertise is required
� Spiral may continue indefinitely
� Developers must be reassigned during non-

development phase activities
� May be hard to define objective, verifiable milestones

that indicate readiness to proceed through the next
iteration

When to use Spiral Model

• When creation of a prototype is appropriate
• When costs and risk evaluation is important
• For medium to high-risk projects
• Long-term project commitment unwise because of

potential changes to economic priorities
• Users are unsure of their needs
• Requirements are complex
• New product line
• Significant changes are expected (research and

exploration)

Agile SDLCs

• Speed up or bypass one or more life cycle
phases

• Usually less formal and reduced scope
• Used for time-critical applications
• Used in organizations that employ disciplined

methods

1/18/2016

8

Some Agile Methods

• Rapid Application Development (RAD)
• Incremental SDLC
• Scrum
• Extreme Programming (XP)
• Adaptive Software Development (ASD)
• Feature Driven Development (FDD)
• Crystal Clear
• Dynamic Software Development Method (DSDM)
• Rational Unify Process (RUP)

Rapid Application Development (RAD)

Rapid Application Development (RAD) Rapid Application Model (RAD)

• Requirements planning phase (structured
discussion of business problems)

• User description phase – automated tools
capture information from users

• Construction phase – productivity tools, such as
code generators, screen generators, etc. inside
a time-box. (“Do until done”)

• Cutover phase -- installation of the system, user
acceptance testing and user training

Requirements Planning Phase

• Combines elements of the system planning
and systems analysis phases of the System
Development Life Cycle (SDLC).

• Users, managers, and IT staff members
discuss and agree on business needs,
project scope, constraints, and system
requirements.

• It ends when the team agrees on the key
issues and obtains management
authorization to continue.

User Design Phase

• Users interact with systems analysts and
develop models and prototypes that represent all
system processes, inputs, and outputs.

• Typically use a combination of Joint Application
Development (JAD) techniques and CASE tools
to translate user needs into working models.

• A continuous interactive process that allows
users to understand, modify, and eventually
approve a working model of the system that
meets their needs.

1/18/2016

9

Construction Phase

• Focuses on program and application
development task similar to the SDLC.

• However, users continue to participate and
can still suggest changes or improvements as
actual screens or reports are developed.

• Its tasks are programming and application
development, coding, unit-integration, and
system testing.

Cutover Phase

• Resembles the final tasks in the SDLC
implementation phase.

• Compared with traditional methods, the entire
process is compressed. As a result, the new
system is built, delivered, and placed in
operation much sooner.

• Tasks are data conversion, full-scale testing,
system changeover, user training.

RAD Strengths

• Reduced cycle time and improved productivity
with fewer people means lower costs

• Time-box approach mitigates cost and schedule
risk

• Customer involved throughout the complete
cycle minimizes risk of not achieving customer
satisfaction and business needs

• Focus moves from documentation to code
(WYSIWYG).

• Uses modeling concepts to capture information
about business, data, and processes.

RAD Weaknesses

• Accelerated development process
must give quick responses to the user

• Risk of never achieving closure
• Hard to use with legacy systems
• Requires a system that can be

modularized
• Developers and customers must be

committed to rapid-fire activities in an
abbreviated time frame.

When to use RAD

• Reasonably well-known requirements
• User involved throughout the life cycle

• Project can be time-boxed
• Functionality delivered in increments

• High performance not required
• Low technical risks
• System can be modularized

