
Professor Hausi A. Müller PhD PEng FCAE

Department of Computer Science
Faculty of Engineering

University of Victoria

http://www.engr.uvic.ca/~seng321/
https://courses1.csc.uvic.ca/courses/201/spring/seng/321

Announcements
 New class room as of Wed

 MAC 288 (original one)

 Midterm rescheduled due
to lab clash
 Fri, Feb 26 in class

confirmed !!

 Website
 Due today
 Submission: send link to

hausimuller@gmail.com with
Subject: SENG 321 Website

 Assignments/Deliverables
 S0, C0, S1, C1 specs

posted
 Group website spec posted

 Projects
 Original RFP posted again
 Check for project websites

2

ULS Systems Solve
Wicked Problems
 Wicked problem

An ill-defined design and planning
problem having incomplete,
contradictory, and changing
requirements.

 Solutions to wicked problems are
often difficult to recognize
because of complex
interdependencies.

 This term was suggested by H.
Rittel & M. Webber in “Dilemmas
in a General Theory of Planning,”
Policy Sciences 4, Elsevier (1973)

 Wicked problems are problems
that are not amenable to analytic,
reductionist analysis.

3

ULS Systems Solve
Wicked Problems
 Wicked problem

An ill-defined design and planning
problem having incomplete,
contradictory, and changing
requirements.

 Solutions to wicked problems are
often difficult to recognize
because of complex
interdependencies.

 This term was suggested by H.
Rittel & M. Webber in “Dilemmas
in a General Theory of Planning,”
Policy Sciences 4, Elsevier (1973)

 Wicked problems are problems
that are not amenable to analytic,
reductionist analysis.

4

Characteristics of
Wicked Problems
 You don't understand the problem

until you have developed a solution
 There is no definitive formulation of the

problem.
 The problem is ill-structured
 An evolving set of interlocking issues and

constraints

 There is no stopping rule
 There is also no definitive Solution
 The problem solving process ends

when you run out of resources

 Every wicked problem is essentially
unique and novel
 There are so many factors and conditions,

all embedded in a dynamic social context,
that no two wicked problems are alike

 No immediate or ultimate test of a solution
 Solutions to them will always be custom

designed and fitted

 Solutions are not right or wrong
 Simply better, worse, good enough, or

not good enough.
 Solutions are not true-or-false, but

good-or-bad.

 Every solution to a wicked
problem is a one-shot operation.
 You can't learn about the problem

without trying solutions.
 Every implemented solution has

consequences.
 Every solution you try is expensive and

has lasting unintended consequences
(e.g., spawn new wicked problems).

 Wicked problems have no given
alternative solutions
 May be no feasible solutions
 May be a set of potential solutions

that is devised, and another
set that is never even thought of.

5

Good News
 Many software problems are not wicked

6

Bad News
 Many software problems are wicked

7

8

Common Problems
~20 Years Later
 Disappointed customers
 Serious quality issues
 Significant delays (years!)
 Canceled projects
 Deployed projects that are never used
 Rapidly changing requirements
 Long hours of overtime

9

Project Failures
 Development teams spend insufficient time to

understand “the problem behind the problem”
 The real business problems—the big picture
 The needs of the stakeholders (especially users)
 The nature of the environment of the application

 The outcome is
 Customer disappointment
 Wasted resources
 Systems that do not meet expectations

10

Asking the Right Questions
 The job of a requirement analyst is to
 Ask the right questions
 Understand the problem behind the problem
 Determine the difference between What vs. How?

 Examples
 Slow elevators in a skyscraper
 Empty toothpaste boxes

11

Used briefly then
abandoned, 19.0%

Delivered but never
successfully used,

47.5%

Not delivered but paid
for, 29.0%

Used as delivered,
1.5%

Used after extensive
modifications, 3%

Project Failures (1979)

“Where the Money Went”
Report to Congress by the Comptroller General, GAO, FGMSD80-4; Nov '79

(Based on 9 software contracts)

12

Project Failures (1995)

Successful
16.2%

Challenged
52.7%

Cancelled
31.1%

[The Standish Group, 1995]

■ Large companies had more canceled than challenged
■ Small companies had more challenged than canceled

13

Delivered Functionality
 Only 7% of challenged projects deliver the

originally planned functionality.
 Over a 50% chance to deliver just 50% of the

originally planned functionality.

27%

22%

39%

7% 5%
<25%
25-49%
50-74%
75-99%
100%

[The Standish Group, 1995]
14

Cost of Incorrect or
Incomplete Requirements

 [1981] ~75–85% of all errors found in SW can be
traced back to the requirements and design
phases

 [2000] Based on a survey of the cost of
maintaining 500 major projects, 70–85% of total
project costs are due to requirement errors and
new requirements

15

Root Causes for Project Failure
and Primary Success Factors

Successful
16.2%

Challenged
52.7%

Cancelled
31.1%

[The Standish Group, 1995]

■ Root cause for Challenged projects:
– Lack of user input: 13% of all projects
– Incomplete requirements and specifications: 12%
– Changing reqs and specs: 12%

■ Primary success factors
– User involvement: 16%
– Executive support: 14%
– Clear statement of reqs: 12%

16

Why Software Projects Fail

17

Largest Software Development
Problems By Category
 The largest problems

appearing in ~50%
of responses:
 Requirement

specifications
 Managing customer

requirements
 Coding was a

non-issue

18

Projects Show Steady
Slow Improvement

Based on projects in 30,000 US companies
[Standish Group 1994-2000]

16

27

26

28

31

40

28

23

53

33

46

49

0% 20% 40% 60% 80% 100%

1994

1996

1998

2000

Succeeded
Failed
Challenged

19

Percentage of Project Costs
Devoted to Maintenance

60
65
70
75
80
85
90
95

100

1975 1980 1985 1990 1995 2000 2005

Zelkowitz 79

Lientz & Swanson 81

McKee 1984

Port 98 Huff 90

Moad 90

Eastwood 93

Erlikh 00

20

Survey of Software Maintenance
Activities
 Perfective: add new functionality
 Corrective: fix faults
 Adaptive: new file formats, refactoring

17.4
60.3

18.2

56.739.0

2.2

Lientz, Swanson, Tompkins [1978]
Nosek, Palvia [1990]

MIS Survey

Schach, Jin, Yu, Heller, Offutt [2003]
Mining ChangeLogs
(Linux, GCC, RTP)

21

Requirement Engineering
Process

Elicitation

Analysis

Specification

Validation

22

Many Stakeholders: Different
Visions and Conflicting Goals

23

Antagonism between
Users and Developers
Developers’ View of Users Users’ View of Developers

Users don’t know what they want.
Users can’t articulate what they want.
Users have too many needs that are
politically motivated.
Users want everything right now.
Users can’t prioritize needs.
Users refuse to take responsibility for
the system.
Users are unable to provide a usable
statement of needs.
Users are not committed to system
development projects.
Users are unwilling to compromise.
Users can’t remain on schedule.

Developers don’t understand operational needs.
Developers place too much emphasis on
technicalities.
Developers try to tell us how to do our jobs.
Developers can’t translate clearly stated needs into
a successful system.
Developers say no all the time.
Developers are always over budget.
Developers are always late.
Developers ask users for time and effort, even to
the detriment of the users’ important primary
duties.
Developers set unrealistic standards for
requirements definition.
Developers are unable to respond quickly to
legitimately changing needs. 25

