
History of UML
Unified Modelling Language
UML is a graphical language for visualizing, specifying, constructing,
and documenting software artifacts.
UML offers a standard way to write a system's blueprints, including
conceptual things such as business processes and system functions as
well as concrete things such as PL statements, DB schemas, or
reusable components.
UML is a set of notations, not a methodology and not a process

Version 2.2 is the latest standard (Feb 2009)
There are now 14 kinds of diagrams

http://www.uml.org/ 1

History of UML
Unified Modelling Language
UML does have an official standard

Backed by OMG (Object Management Group)
OMG is a not-for-profit industry specifications consortium
OMG members define and maintain the UML spec
Software providers build tools to conform to these specs

Rational (now owned by IBM) is the big mover behind UML,
but they don’t “own” UML
Tremendous history and politics behind UML
Many expensive tools, seminars, books, hype, … but

UML is just a set of notations
UML doesn’t solve the problems, it gives a way of writing them down

2http://www.omg.org/

Domains Covered by UML
Notations and Semantics
User Interaction or Use Case Model

Describes the boundary and interaction between the system and users
Corresponds in some respects to a requirements model

Interaction or Communication Model
Describes how objects in the system will interact with each other to get work done

State or Dynamic Model
State charts describe the states or conditions that classes assume over time.
Activity graphs describe the workflows the system will implement

Logical or Class Model
Describes the classes and objects that will make up the system

Physical Component Model
Describes the software and hardware components that make up the system

Physical Deployment Model
Describes the physical architecture and the deployment of components

3

History of
Analysis and Design Notations
1970s

Procedural languages
COBOL, FORTRAN, PL/I, C, Pascal

Systems are structured as TDFD
TDFD == top-down functional decomposition

Data is mostly global and passive
Notations and tools

Entity Relationship (ER) diagrams
Originally for DB design

Data-flow diagrams (DFD)
Control-flow diagrams (CFG)
Flowcharts
State transition diagrams STD

STDs (for state-oriented engineering applications)
Data dictionaries

Methodologies
Structured analysis

4

History of
Analysis and Design Notations
1980s

Some OO languages emerge
Simula-67, C++, Objective-C, Objective Pascal, OO-Fortran, OO-Cobol

Systems structured as modules, use info-hiding & interfaces
Data is encapsulated; must use interfaces
Notations and tools

Class/object diagrams (ER++) for analysis modelling
Statecharts (formal STDs for engineering applications)
Message sequence charts (MSC)
Use cases (Ivar Jacobson)

Methodologies
Object Modeling Technique (OMT) (Jim Rumbaugh)
Object-Oriented Analysis (OOA) and Object-Oriented Design (OOD)
 (OOA/D) (Grady Booch)
Computer-Aided Software Engineering (CASE) tools
Many others

5

History of
Analysis and Design Notations
1990s

Most of the software industry is tired of tool/notation wars
An agreement on a notation without religion

The three amigos gather at Rational
Grady Booch, Jim Rumbaugh and Ivar Jacobson
They announce war is over (if you want it)
 UML

UML takes a kitchen-sink approach to diagram design
Contains many kinds of diagrams
Makes few restrictions on how to use them
Model various views

Requirements
Architecture
Design
Implementation
Dynamic or run-time

6

Overview of UML Diagrams

7

Structural
: element of spec.

irrespective of time

•Class
•Component
•Deployment
•Object
•Composite structure
•Package

Behavioral
: behavioral features of a

system / business process

•Activity
•State machine
•Use case
•Interaction

Interaction
: emphasize object

interaction

•Communication(collabe
ration)
•Sequence
•Interaction overview
•Timing

UML diagram hierarchy

8

Class diagram

9

UML class diagrams show the classes of the
system, their inter-relationships, and the
operations and attributes of the classes

Explore domain concepts in the form of a domain model

Analyze requirements in the form of a conceptual/analysis
model

Depict the detailed design of object-oriented or object-
based software

Class diagram

10

Class diagram

11

So in a brief, class diagrams are used for:
•Describing the static view of the system.
•Showing the collaboration among the
elements of the static view.
•Describing the functionalities performed by
the system.
•Construction of software applications using
object oriented languages.

Use case diagram

12

UML Use cases diagrams describes the behavior of the
target system from an external point of view. Use cases
describe "the meat" of the actual requirements.

Use cases. A use case describes a sequence of actions
that provide something of measurable value to an actor and
is drawn as a horizontal ellipse.

Actors. An actor is a person, organization, or external
system that plays a role in one or more interactions with
your system. Actors are drawn as stick figures.

Associations. Associations between actors and use
cases are indicated by solid lines. An association exists
whenever an actor is involved with an interaction described
by a use case.

Use case diagram

Use case diagram

14

Waiter
Serve Food

Component Diagram

15

Component diagrams are used to model
physical aspects of a system.

Physical aspects are elements such as
executables, libraries, files, documents etc.,
which reside in a node.

Component Diagram

16

Dynamic Modelling

17

Structural Diagrams model the static aspect
of the system. Most of the behavioral
diagrams model the dynamic behavior of the
system.
> This may lead to identification of new
classes.
Dynamic modelling can be done by:
Sequence Diagrams
State Diagrams

Sequence diagram

18

UML Sequence diagrams models the
collaboration of objects based on a time
sequence. It shows how the objects interact
with others in a particular scenario of a use
case.

Sequence diagram

19

Statechart Diagram

20

Statechart Diagram

Activity Diagram

22

Activity diagrams are graphical
representations of workflows of stepwise
activities and actions.

Activity diagrams may be regarded as a
form of flowchart.

Activity Diagram

