
2016‐02‐28

1

History of UML 
Unified Modelling Language

UML is a graphical language for visualizing, specifying, constructing, 
and documenting software artifacts.
UML offers a standard way to write a system's blueprints, including 
conceptual things such as business processes and system functions as 
well as concrete things such as PL statements, DB schemas, or 
reusable components.
UML is a set of notations, not a methodology and not a process

Version 2.2 is the latest standard (Feb 2009)
There are now 14 kinds of diagrams

http://www.uml.org/ 1

History of UML 
Unified Modelling Language

UML does have an official standard
Backed by OMG (Object Management Group)
OMG is a not-for-profit industry specifications consortium
OMG members define and maintain the UML spec
Software providers build tools to conform to these specs

Rational (now owned by IBM) is the big mover behind UML, 
but they don’t “own” UML
Tremendous history and politics behind UML
Many expensive tools, seminars, books, hype, … but

UML is just a set of notations
UML doesn’t solve the problems, it gives a way of writing them down

2http://www.omg.org/

Domains Covered by UML 
Notations and Semantics

User Interaction or Use Case Model
Describes the boundary and interaction between the system and users
Corresponds in some respects to a requirements model

Interaction or Communication Model
Describes how objects in the system will interact with each other to get work done

State or Dynamic Model
State charts describe the states or conditions that classes assume over time.
Activity graphs describe the workflows the system will implement

Logical or Class Model
Describes the classes and objects that will make up the system

Physical Component Model
Describes the software and hardware components that make up the system

Physical Deployment Model
Describes the physical architecture and the deployment of components

3

History of
Analysis and Design Notations

1970s
Procedural languages

COBOL, FORTRAN, PL/I, C, Pascal
Systems are structured as TDFD

TDFD == top-down functional decomposition
Data is mostly global and passive
Notations and tools

Entity Relationship (ER) diagrams
Originally for DB design

Data-flow diagrams (DFD)
Control-flow diagrams (CFG)
Flowcharts
State transition diagrams STD

STDs (for state-oriented engineering applications)
Data dictionaries

Methodologies
Structured analysis

4

History of
Analysis and Design Notations

1980s
Some OO languages emerge

Simula-67, C++, Objective-C, Objective Pascal, OO-Fortran, OO-Cobol
Systems structured as modules, use info-hiding & interfaces
Data is encapsulated; must use interfaces
Notations and tools

Class/object diagrams (ER++) for analysis modelling
Statecharts (formal STDs for engineering applications)
Message sequence charts (MSC)
Use cases (Ivar Jacobson)

Methodologies
Object Modeling Technique (OMT) (Jim Rumbaugh)
Object-Oriented Analysis (OOA) and Object-Oriented Design (OOD) 
 (OOA/D) (Grady Booch)
Computer-Aided Software Engineering (CASE) tools
Many others

5

History of
Analysis and Design Notations

1990s
Most of the software industry is tired of tool/notation wars

An agreement on a notation without religion
The three amigos gather at Rational

Grady Booch, Jim Rumbaugh and Ivar Jacobson
They announce war is over (if you want it)
 UML

UML takes a kitchen-sink approach to diagram design 
Contains many kinds of diagrams
Makes few restrictions on how to use them
Model various views

Requirements
Architecture
Design
Implementation
Dynamic or run-time 

6



2016‐02‐28

2

Overview of UML Diagrams

7

Structural
: element of spec. 

irrespective of time

•Class
•Component
•Deployment
•Object
•Composite structure
•Package

Behavioral
: behavioral features of a 

system / business process

•Activity
•State machine
•Use case
•Interaction

Interaction
: emphasize object 

interaction

•Communication(collabe
ration)
•Sequence
•Interaction overview
•Timing

UML diagram hierarchy 

8

Class diagram

9

UML class diagrams show the classes of the 
system, their inter-relationships, and the 
operations and attributes of the classes

Explore domain concepts in the form of a domain model 

Analyze requirements in the form of a conceptual/analysis 
model 

Depict the detailed design of object-oriented or object-
based software

Class diagram

10

Class diagram

11

So in a brief, class diagrams are used for:
•Describing the static view of the system.
•Showing the collaboration among the
elements of the static view.
•Describing the functionalities performed by
the system.
•Construction of software applications using
object oriented languages.

Use case diagram

12

UML Use cases diagrams describes the behavior of the 
target system from an external point of view. Use cases 
describe "the meat" of the actual requirements.

Use cases. A use case describes a sequence of actions 
that provide something of measurable value to an actor and 
is drawn as a horizontal ellipse. 

Actors. An actor is a person, organization, or external 
system that plays a role in one or more interactions with 
your system. Actors are drawn as stick figures. 

Associations. Associations between actors and use 
cases are indicated by solid lines. An association exists 
whenever an actor is involved with an interaction described 
by a use case. 



2016‐02‐28

3

Use case diagram Use case diagram

14

Waiter

Serve Food

Component Diagram

15

Component diagrams are used to model 
physical aspects of a system. 

Physical aspects are elements such as 
executables, libraries, files, documents etc.,  
which reside in a node.

Component Diagram

16

Dynamic Modelling

17

Structural Diagrams model the static aspect 
of the system. Most of the behavioral 
diagrams model the dynamic behavior of the 
system.
> This may lead to identification of new 
classes. 
Dynamic modelling can be done by: 
Sequence Diagrams
State Diagrams

Sequence diagram

18

UML Sequence diagrams models the 
collaboration of objects based on a time 
sequence. It shows how the objects interact 
with others in a particular scenario of a use 
case. 



2016‐02‐28

4

Sequence diagram

19

Statechart Diagram

20

Statechart Diagram Activity Diagram

22

Activity diagrams are graphical 
representations of workflows of stepwise 
activities and actions. 

Activity diagrams may be regarded as a 
form of flowchart.

Activity Diagram


