2016-02-28

History of UML
Unified Modelling Language

eUML is a graphical language for visualizing, specifying, constructing,
and documenting software artifacts.
eUML offers a standard way to write a system's blueprints, including
conceptual things such as business processes and system functions as
well as concrete things such as PL statements, DB schemas, or
reusable components.
eUML is a set of , not a methodology and not a process
eVersion 2.2 is the latest standard (Feb 2009)
eThere are now 14 kinds of diagrams

History of UML
Unified Modelling Language

eUML does have an
eBacked by
eOMG is a not-for-profit industry specifications consortium
#OMG members define and maintain the UML spec
eSoftware providers build tools to conform to these specs
eRational (now owned by IBM) is the big mover behind UML,
ebut they don’t “own” UML
eTremendous history and politics behind UML
eMany tools, seminars, books, hype, ... but
eUML is just a set of notations
eUML doesn’t solve the problems, it gives a way of writing them down

_http://www.omg.org/ -

Domains Covered by UML
Notations and Semantics

or
eDescribes the boundary and interaction between the system and users
eCorresponds in some respects to a requirements model

or
eDescribes how objects in the system will interact with each other to get work done
or
describe the states or conditions that classes assume over time.
describe the workflows the system will implement
or

eDescribes the classes and objects that will make up the system

eDescribes the software and hardware components that make up the system

eDescribes the physical architecture and the deployment of components

History of
Analysis and Design Notations

1970s
eProcedural languages
#COBOL, FORTRAN, PL/I, C, Pascal
eSystems are structured as TDFD
oTDFD == top-down functional decomposition
eData is mostly global and passive
eNotations and tools
eEntity Relationship (ER) diagrams
+Originally for DB design
eData-flow diagrams (DFD
eControl-flow diagrams (CFG)
eFlowcharts
eState transition diagrams STD
-STDs (for state-oriented engineering applications)
eData dictionaries
eMethodologies
eStructured analysis

History of
Analysis and Design Notations

1980s
eSome OO languages emerge
eSimula-67, C++, Objective-C, Objective Pascal, OO-Fortran, OO-Cobol
eSystems structured as modules, use info-hiding & interfaces
eData is encapsulated; must use interfaces
eNotations and tools
eClass/object diagrams (ER++) for analysis modelling
eStatecharts (formal STDs for engineering applications)
eMessage sequence charts (MSC)
eUse cases ()
eMethodologies
eObject Modeling Technique () ()
eObject-Oriented Analysis () and Object-Oriented Design ()
.
eComputer-Aided Software Engineering () tools
eMany others

History of
Analysis and Design Notations

1990s
eMost of the software industry is tired of tool/notation wars
e#An agreement on a notation without religion
eThe gather at
eGrady Booch, Jim Rumbaugh and Ivar Jacobson
eThey announce

eUML takes a kitchen-sink approach to diagram design
eContains many kinds of diagrams
eMakes few restrictions on how to use them
eModel various views
=Requirements
=Architecture
«Design
«Implementation
=Dynamic or run-time

2016-02-28

Overview of UML Diagrams

Behavioral
Structural ot
: element of spec.
irrespective of time «Activity
«Class «State machine
«Component eUse case
eDeployment o Interaction
~Comee Interaction
e Composite structure C Ol
. Pac/(age IO : emphasize object
e«Communication(collabe
ration)
*Sequence

e Interaction overview

o Timing

UML diagram hierarchy

I

[

7

Class diagram

UML class diagrams show the classes of the
system, their inter-relationships, and the
operations and attributes of the classes

Explore domain concepts in the form of a domain model

Analyze requirements in the form of a conceptual/analysis
model

Depict the detailed design of object-oriented or object-
based software

i Companent Ctject Ativity Use Case
Diagram Diagram Diagram Deaxgramn Diagram
Prafis :")’_"c':"'r': Daploymant Package Stats Maching
Diagram prvvey Diagram Disgram Ciagram
- TRiaracion .
| ——— Soquence | | Communieasen | | {ErRCH iming
[r—— isgram | | Disgram ar
Otagram | | oty | Cagam Dagram
8
Samp (vt i

Sib Elass

Class diagram

So in a brief, class diagrams are used for:
*Describing the static view of the system.
«Showing the collaboration among the
elements of the static view.

*Describing the functionalities performed by
the system.

*Construction of software applications using
object oriented languages.

Use case diagram

UML Use cases diagrams describes the behavior of the
target system from an external point of view. Use cases
describe "the meat" of the actual requirements.

Use cases. A use case describes a sequence of actions
that provide something of measurable value to an actor and
is drawn as a horizontal ellipse.

Actors. An actor is a person, organization, or external
system that plays a role in one or more interactions with
your system. Actors are drawn as stick figures.

Associations. Associations between actors and use
cases are indicated by solid lines. An association exists
whenever an actor is involved with an interaction described
by a use case.

12

2016-02-28

Use case diagram H

Use case diagram

communication

octor >
Waiter
)\- use case

Component Diagram :

Component diagrams are used to model
physical aspects of a system.

Physical aspects are elements such as
executables, libraries, files, documents etc.,
which reside in a node.

Component Diagram

Pe——

Componants ki

Dynamic Modelling :

Structural Diagrams model the static aspect
of the system. Most of the behavioral
diagrams model the dynamic behavior of the
system.

> This may lead to identification of new
classes.

Dynamic modelling can be done by:
Sequence Diagrams

State Diagrams

Sequence diagram

UML Sequence diagrams models the
collaboration of objects based on a time
sequence. It shows how the objects interact
with others in a particular scenario of a use
case.

2016-02-28

Sequence diagram
x b

o] o | ey []
: .

1 I
Laep | [

Tuntil complete]
I

|

|

I |
Add Curder Mem 1 I
|

3 |

Conlitm Dudes |

— serwd Oucles

I

[}

I

|

I

| T
| Payment dutad \
| Frucess Fayment
| P T
I

|

I

I

|

ak

= 2
Coalirm Oreder |

confitmed
€
Drliver Fand

i .

Statechart Diagram

® Graph whose nodes are states and whose directed arcs are

transitions labeled by event names

® We distinguish between two types of operations in

statecharts:

= Activity: Operation that takes time to complete

associated with states

{in UML:) can be described by its own Activity diagram

= Action: "Instantaneous" operation (in UML: elementary op.)

associated with events

associated with states (reduces drawing complexity):

Entry, Exit, Internal Action

* A statechart diagram relates events and states for one class

« An object model with a set of objects

can have a corresponding set of state diagrams

Statechart Diagram

coins_in{amount) / set balance
T, Collecting Money
. — __ |ceins_in{amount}/add to balance
cancel / refund coins -

/ /
N\ ;f f."selectiltern} _ /
A [t E’“p“’]/ '."' /| change<0]
[testing item and computing :hange]
entry / test and charge item
_ ‘/[change=cl] l[change:ﬂ]
(dispensing item J"—[making change)

MNote some states do not have (nor need) a name,
but need further details

Activity Diagram

Activity diagrams are graphical

representations of workflows of stepwise

activities and actions.

Activity diagrams may be regarded as a

form of flowchart.

Activity Diagram

1 -
[ere— Recen
Onder [| Orer

forder
wcoapted|

s
rhaciec]

