
14/01/2013

1

Welcome to SENG 371
Software Evolution
Spring 2013
A Core Course of the BSEng Program

Hausi A. Müller, PhD PEng
Professor, Department of Computer Science
Associate Dean Research, Faculty of Engineering
University of Victoria

Learning objectives

 Define and introduce the topics of
software evolution and maintenance

 Discuss how these concepts fit within the
wider context of software engineering

 Motivate why maintenance and evolution
are important topics to consider

 Give a flavour of the theoretical
background and key skills required to
implement effective change

2

Why study this topic?
 Increasing reliance on systems, everywhere,

everything, every minute...
 Critical systems—safety, life and death, financial
 Cost of change estimated at 40-70% of

total life-cycle costs
◦ Fred Brooks, in his seminal book The Mythical Man-Month,

states that over 90% of the costs of a typical system arise
in the maintenance phase, and that any successful piece of
software will inevitably be maintained.

 Software maintenance experts and professionals are
in high demand

 Few jobs are in green field development, even such
jobs require extensive reuse or integration of other
components

3 4

We expect software
to be reliable, efficient
and effective in safety-
critical systems as well
as desktop computers

Software is central to our lives
We interact daily with software
◦ At home—computer games
◦ At the office—on-line services
◦ In the car—embedded control

systems

People Depend on Software

Some basic definitions
 Software — the programs, documentation, and

operating procedures by which computers can be
made useful to humans

 Software evolution — a process of continuous
change from a lower, simpler to a higher, more
complex, or better state

 Software maintenance — modification of a
software product after delivery, to correct faults,
to improve performance or other attributes, or
to adapt the product to a modified environment

 Maintainability — the ease with which
maintenance can be carried out

5

Boundary between development-time
and runtime is disappearing
 Maintenance at runtime
 Evolution at runtime
 Requirements at

runtime
 Models at runtime

6

 Bencomo: Workshop Series on Models@run-time, http://www.comp.lancs.ac.uk/~bencomo/WorkshopMRT.html
 Bencomo: Workshop Series on Requirements@run.time, http://www.comp.lancs.ac.uk/~bencomo/RRT/
 Dagstuhl Seminar: Models@run.time, 2011 http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=11481

14/01/2013

2

Parts of a software system

7

Maintenance versus evolution... (1)
 The term Software Engineering was coined in

1968 at a NATO meeting to address the
upcoming “software crisis”

 Maintenance was considered to be something
that was done after delivery — as in the waterfall
model

 Evolution captures the more realistic evolutionary
model of software — it is never “done”

 Manny Lehman in the 70’s proposed laws of
software evolution, after studying the IBM OS 360
operating system — findings later confirmed in
other studies, especially of proprietary systems

 Term gaining more acceptance since the 90’s

8

Maintenance versus evolution... (2)
 Software that is used in the real world, will need to adapt as

the world continually changes
 Software that doesn’t permit change is said to suffer from

decay – a poorly degraded system will have to be phased out
(sometimes called a legacy system)

 Software evolution is also fundamental in agile development
which recognizes the need to continually adapt to changing
requirements in a lightweight and agile manner

 Nowadays the terms software evolution and software
maintenance are considered synonyms

 Prefer the term evolution, because maintenance may imply
that the software has deteriorated in some way

Mens and Demeyer: Software Evolution, Springer, 2008

9 10

11

Course description
 Introduces problems and solutions of long-term

software maintenance/evolution and large-scale,
long-lived software systems.

 Topics include software engineering techniques
for programming-in-the-large, programming-in-
the-many, legacy software systems, software
architecture, software evolution, software
maintenance, reverse engineering, program
understanding, software visualization, advanced
issues in object-oriented programming, design
patterns, antipatterns, and client-server
computing.

12

14/01/2013

3

Course description
 Large software systems form the backbone of much

of the computing world; modern clients and servers
rely on operating systems, database management
systems, office productivity suites, web servers, and a
variety of other large-scale, non-trivial software
packages. Such packages can easily contain many
millions of lines of source code, developed by
thousands of individuals over the course of many
years, often with different versions and revisions
across the life of the product.

 This course introduces the problems and solutions
inherent in developing such large scale software
systems.

13

Course topics
 Software maintenance and

evolution

 Build environment management

 Software installation and
configuration

 Fundamentals of software change

 Maintenance processes

 Program understanding

 Management and measurement

 Human side of software
maintenance

 Reverse engineering

 Software visualization

 Testing

 Patterns and anti-patterns

 Software Safety

 Reuse, reusability and
reengineering

 Maintenance tools

 Documentation, code and API
guidelines

 Open source development

 Legal aspects in maintenance

14

Course web sites
 Course outline
◦ http://courses.seng.uvic.ca/courses/2013/spring/seng/371

 UVic Calendar Course Description
◦ http://web.uvic.ca/calendar2012/CDs/SENG/371.html

 Course website
◦ http://www.engr.uvic.ca/~seng371
◦ Syllabus
◦ Lecture slides (pdf)
◦ Lab slides (pdf)
◦ Assignments
◦ Materials for reading assignments
◦ Everything else you need to know about the course

15 16

Prerequisites and Related Courses

 Prerequisites
◦ SENG 271 Software Model Engineering
◦ Basics of software life cycle
◦ Basics of software architecture

 Co-requisites
◦ SENG 321 Requirements Engineering

Optional Textbooks
 Grubb and Takang: Software Maintenance, 2nd

Edition,World Scientific, 2003 — ISBN: 978-
981-238-426-3

 Mens and Demeyer: Software Evolution, Springer,
2008 — ISBN: 978-3-540-76439-7 (Print) 978-
3-540-76440-3 (Online)

 There will be additional readings assigned
during the term.

17

Please note

 Your e-mail domain name
◦ Send e-mail and submit assignments only using

uvic.ca domain name
◦ Messages from hotmail and yahoo in

particular are filtered by lab servers and most
professors and end up in the tar pit

 Assignment 1
◦ A1 will be posted by Monday

18

14/01/2013

4

Calendar and deadlines
 Assignment 1
 Due Mon, Jan 28

 Assignment 2
 Due Thu, Feb 28

 Assignment 3
 Due Thu, March 28

 Breaks
 Reading Feb 18-22
 Easter April 1

 Midterm
 Thu, Feb 14
 In class, closed books,

closed notes
 Final
 April 2013 to be

scheduled by university
 3 hours, closed books,

closed notes

19

Course requirements
 Three assignments 45%
 Midterm 15%
 Final 40%
 Class participation +/-10%

 All materials discussed in class are required
for the midterm and final examinations

 Passing the assignments and the final exam is
required to pass the course

20

What is class participation?
 Students should be prepared to speak in

class—it is completely acceptable, indeed
encouraged, for students to give a mini-
presentation on a relevant subject

 Class participation does not just mean signing
in—however, attendance will be taken regularly

 Class participation means speaking up in class,
both with questions and answers

 Note that 10% class participation
corresponds to a full letter grade

21

Instructor
 Hausi A. Müller, PhD, PEng
 Email: hausi@cs.uvic.ca
 Office: ECS 614
◦ Note as Associate Dean Research I have

a second office in EOW

 Phone Number
◦ 250-472-5719

 Office Hours:
◦ MWR 1:30 – 2:30 pm
◦ Or by appointment
◦ E-mail works best

22

23

Questions?

 Organization of the course?
 Evaluation scheme?

 Study course web site carefully
 Visit course web site regularly
 Other questions?!?

Keep in mind

 Ask questions at any time  !! 

 Let’s make this a truly interactive
course!!!

 Take full advantage of this opportunity to
work on your communication skills  !!

24

